

PROGRAM STUDI STATISTIKA SK BAN-PT No. 1765/SK/BAN-PT/AK-PPJ/S/III/2022 FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS PGRI ADI BUANA SURABAYA

FORM F.SK05 BUKTI BIMBINGAN SKRIPSI

Nama : Yohanita Uniyatri Aprilia

NIM : 202400013

Judul Skripsi : Pemodelan Faktor-Faktor yang Mempengaruhi

Keterlibatan Perempuan Indonesia dalam Parlemen Tahun 2022 Menggunakan

Geographically Weighted Regression (GWR)

Dosen Pembimbing : Alfisyahrina Hapsery, S.Si., M.Si

Materi Pembimbingan Skripsi	Tanda Tangan Dosen Pembimbing
1. Bimbingan Stanstika Deskriptif	1
2. Bimbingan Uji Ksumi Klasik	W. W.
3. Bimbing an GWR	
4. Bimbingan Peta Variabel Signifikan	N N
5. Penisi Stahstika Deskaptif	
6. Pevisi yi asumsi klasile	
7. Revisi GWR	1
8. Rewsi Peta Signifikan Tata Bahasa	1
Catatan: *) Coret yang tidak sesuai	· \

PROGRAM STUDI STATISTIKA SK BAN-PT No. 1765/SK/BAN-PT/AK-PPJ/S/III/2022 FAKULTAS SAINS DAN TEKNOLOGI UNIVERSITAS PGRI ADI BUANA SURABAYA

FORM F.SK08 PERBAIKAN/REVISI SEMINAR DAN UJIAN SKRIPSI

Nama

Yohanita Uniyatri Aprilia

NIM

202400013

Judul Skripsi

: Pemodelan Faktor-Faktor yang Mempengaruhi Keterlibatan Perempuan Indonesia dalam Parlemen Tahun 2022 Menggunakan Geographically Weighted

Regression (GWR)

Dosen Pembimbing

: Alfisyahrina Hapsery, S.Si., M.Si.

Materi Revisi Seminar dan Ujian Skripsi	Tanda Tangan Dosen Penguji
1. Nengubah Wanna peta Sariabel Signifikan	
2. Menambah Penjelasan hubangan antar Peta deskriptit dengan Peta Signisikan	
23. Penambahan rumus R Square-di Bab 11	1
Foetsien Lorelasi Fansi Pada	, 3
5. Menambah Interpretari model GNR	*
6. Reusi Kesalahan Panulusan	n't
C1/4-1 7. I1%	2024

Surabaya, V Juli 2024

Pembimbing,

Alfisyahrina Hapsery, S.Si., M.Si

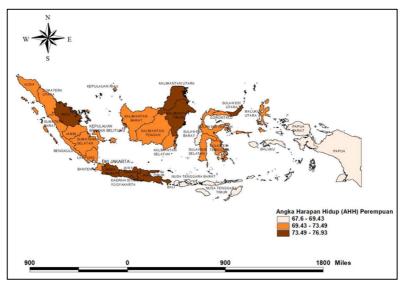
NPR. 1804856/DY

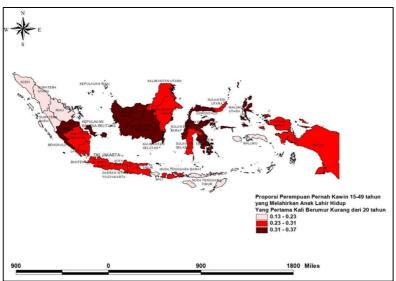
LAMPIRAN

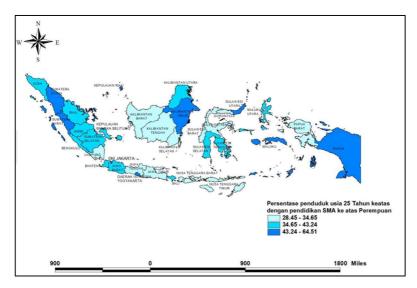
Lampiran 1. Data Penelitian

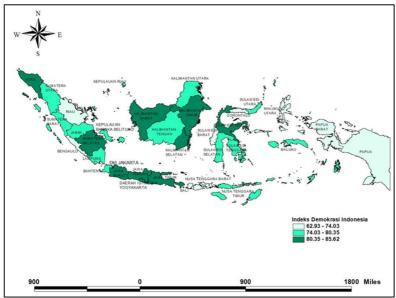
Provinsi	Y	X1	X2	X3	X4	X5	9X	X7	8X	6X	U	Λ
Aceh	11,11	46,15	72,16 0,22	0,22	42,91	80,82	34,87	30,48	54,08	4,21	96,74939930	4,69513500
Bali	16,36	69,62	74,53	0,21	43,18	83,21	39,08	36,38	51,25	4,84	115,09195090	-8,34053890
Banten	17,65	47,17	72,36	0,26	40,14	78,75	31,71	35,76	42,25	5,03	106,06401790	-6,40581720
Bengkulu	15,56	54,36	71,68	0,32	38,72	73,23	35,26	23,2	53,33	4,31	102,26076410	-3,79284510
Di yogyakarta	20,00	63,38	76,93 0,15	0,15	47,12	85,62	41,37	32,87	53,09	5,15	110,36472000	-7,80139000
Dki jakarta	20,75	46,62	75,22	0,14	64,51	82,13	38,34	37,21	48,6	5,25	106,84559900	-6,20876340
Gorontalo	26,67	52,64	70,53	0,35	34,65	73,74	27,12	40,84	59,25	4,04	123,05676930	0,54354420
Jambi	16,36	48,97	73,49	0,33	35,28	77,19	30,25	45,68	52,07	5,13	103,61312030	-1,61012290
Jawa barat	21,85	48,01	75,48 0,30	0,30	35,36	83,34	30	27,44	42,91	5,45	107,66888700	-7,09091100
Jawa tengah	20,00	58,31	76,53	0,26	28,79	84,79	34,59	32,58	50,72	5,31	110,14025940	-7,15097500
Jawa timur	19,17	57,28	73,71	0,27	30,95	84,92	35,81	29,19	49,41	5,34	112,23840170	-7,53606390
Kalimantan barat	18,46	52,51	73,00	0,32	29,03	81,48	35,31	26,09	45,26	5,07	106,61314050	0,47734750
Kalimantan selatan	20,00	51,90	71,13	0,32	31,02	80,86	36,72	27,07	50,97	5,11	5,11 115,28375850	-3,09264150
Kalimantan tengah	33,33	47,68	72,02	0,37	30,30	79,3	33,37	30,84	43,8	6,45	113,38235450	-1,68148780
Kalimantan timur	20,00	45,17	76,52	0,27	50,12	83,58	24,02	34,18	49,78	4,48	116,41938900	0,53865860

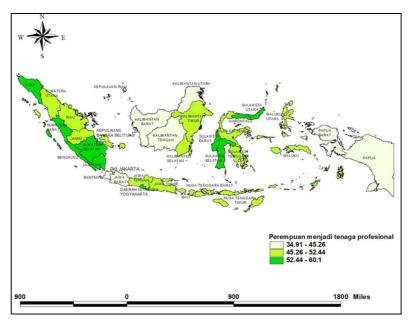
Provinsi	Y	X1	X2	X3	X4	X5	9X	X7	8X	6X	U	Λ
Kalimantan utara	11,43	49,30	74,54	0,29	41,48	78,79	26,91	27,9	43,18	5,34	116,04138890	3,07309290
Kep, bangka belitung	8,89	47,55	72,97	0,33	36,08	76,65	26,92	24,09	51,7	4,4	106,44058720	-2,74105130
Kep, riau	8,89	50,68	72,47	0,13	58,40	78,77	28,64	38,96	44,14	5,09	108,14286690	3,94565140
Lampung	18,82	53,54	72,97	0,27	30,44	78,32	29,26	33,76	53,06	4,28	105,40680790	-4,55858490
Maluku	22,22	52,47	68,43	0,21	48,71	75,26	37,08	37,5	51	5,11	130,14527340	-3,23846160
Maluku utara	28,89	46,87	70,79	0,32	40,03	62,93	36,65	26,54	47,59	22,94	127,80876930	1,57099930
Nusa tenggara barat	1,59	59,16	69,07	0,30	29,68	73,38	33,06	30,59	47,46	6,95	117,36164760	-8,65293340
Nusa tenggara timur	20,00	67,87	69,43	0,21	28,45	77,83	43,93	36,06	50,85	3,05	121,07937050	-8,65738190
Papua barat	14,29	54,63	68,44	0,30	49,02	64,02	28,22	31,93	41,61	2,01	141,34701590	-5,01222020
Papua	15,94	69,09	68,16	0,28	30,80	66,65	36,86	35,1	34,91	8,97	133,17471620	-1,33611540
Riau	21,54	43,28	73,90	0,23	43,24	73,64	28,03	30,36	52,25	4,55	101,70682940	0,29334690
Sulawesi barat	11,36	58,22	67,60	0,37	32,75	74,03	36,51	35,67	54,82	2,3	119,23207840	-2,84413710
Sulawesi selatan	27,06	50,46	72,96	0,29	38,38	80,09	32,43	37,65	52,99	5,09	119,97405340	-3,66879940
Sulawesi tengah	28,89	53,71	70,95	0,36	34,48	80,92	31,11	38,44	51,58	15,17	121,44561790	-1,43002540
Sulawesi tenggara	20,00	54,94	73,47	0,34	38,11	80,35	36,25	25,85	52,44	5,53	122,17460500	-4,14491000
Sulawesi utara	29,55	44,79	74,04	0,31	46,79	78,22	32,08	46,09	55,39	5,42	123,97499800	0,62469300
Sumatera barat	10,77	56,28	71,89	0,17	48,52	77,35	37,58	38,7	60,1	4,36	100,80000510	-0,73993970
Sumatera selatan	21,33	53,32	72,29	0,30	35,75	80,59	34,68	31,66	53,05	5,23	103,91439900	-3,31943740

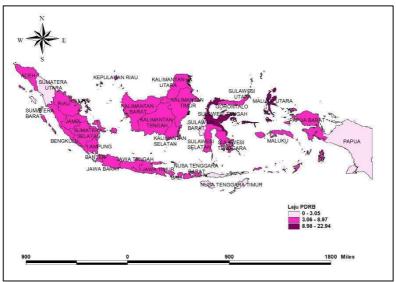

Provinsi	Y	X1	X1 X2 X3 X4	X3		X5	9X	X5 X6 X7 X8		6X	n	Λ
Sumatera utara	14,14	4,14 55,37 71,60 0,16 49,82 79,53 35,98 29,52 48,85	71,60	0,16	49,82	79,53	35,98	29,52		4,73	99,54509740 2,11535470	2,11535470
Keterangan:												
Y	: Keter	Keterlibatan perempuan di parlemen	erempuai	n di paı	rlemen							
X_1	: Tingk	ingkat Partisipasi Angkatan Kerja Perempuan	pasi Ang	gkatan]	Kerja Pe	rempuan	_					
X_2	: Angk	Angka Harapan Hidup (AHH) Perempuan	n Hidup	(AHH)	Peremp	uan						
X_3	: Propo	ırsi Peren	apuan Pe	ernah K	awin 15.	-49 tahu	n yang N	Aelahirk a	an Anak	Lahir Hi	roporsi Perempuan Pernah Kawin 15-49 tahun yang Melahirkan Anak Lahir Hidup Yang Pertama	na
	Kali I	Kali Berumur Kurang dari 20 tahun	Kurang o	dari 20	tahun							
X_4	: Perse	ntase pen	duduk u	sia 25]	Fahun ke	atas den	gan pen	didikan !	SMA ke	atas Pere	ersentase penduduk usia 25 Tahun keatas dengan pendidikan SMA ke atas Perempuan (Persen)	
X_5	: Indek	ndeks Demokrasi Indonesia	rasi Indo	nesia								
X_6	: Sumb	Sumbangan pendapatan perempuan	ndapataı	n peren	ıpuan							


Perempuan menjadi tenaga profesional Laju PDRB


× × × ×


Perempuan di posisi managerial


Lampiran 2. Statistik Deskriptif



Lampiran 3. Matriks Jarak Euclidean

	1	2	3	4	5	6	7	8	9	10
1	0	22,503	14,491	10,120	18,481	14,860	26,633	9,320	16,067	17,879
2	22,503	0	9,233	13,613	4,758	8,517	11,932	13,306	7,528	5,093
3	14,491	9,233	0	4,614	4,521	0,806	18,359	5,386	1,745	4,144
4	10,120	13,613	4,614	0	9,041	5,182	21,243	2,568	6,334	8,565
5	18,481	4,758	4,521	9,041	0	3,863	15,190	9,161	2,788	0,688
6	14,860	8,517	0,806	5,182	3,863	0	17,561	5,621	1,207	3,427
7	26,633	11,932	18,359	21,243	15,190	17,561	0	19,563	17,178	15,035
8	9,320	13,306	5,386	2,568	9,161	5,621	19,563	0	6,818	8,562
9	16,067	7,528	1,745	6,334	2,788	1,207	17,178	6,818	0	2,472
10	17,879	5,093	4,144	8,565	0,688	3,427	15,035	8,562	2,472	0
11	19,736	2,965	6,277	10,657	1,892	5,554	13,502	10,465	4,591	2,133
12	10,728	12,233	6,905	6,097	9,089	6,690	16,444	3,655	7,642	8,404
13	20,104	5,251	9,797	13,042	6,809	8,995	8,581	11,764	8,601	6,552
14	17,813	6,875	8,711	11,320	6,823	7,951	9,927	9,769	7,868	6,358
15	20,104	8,978	12,468	14,806	10,306	11,713	6,637	12,985	11,610	9,928
16	19,360	11,453	13,762	15,396	12,267	13,066	7,457	13,281	13,168	11,805
17	12,215	10,305	3,684	4,310	6,404	3,491	16,938	3,045	4,520	5,756
18	11,418	14,115	10,558	9,720	11,955	10,237	15,297	7,168	11,047	11,275
19	12,672	10,397	1,961	3,238	5,924	2,189	18,373	3,451	3,396	5,397
20	34,325	15,894	24,289	27,890	20,300	23,488	8,034	26,582	22,804	20,384
21	31,216	16,123	23,162	26,105	19,802	22,360	4,862	24,404	21,924	19,704
22	24,557	2,291	11,519	15,864	7,049	10,796	10,817	15,447	9,818	7,376
23	27,753	5,996	15,183	19,437	10,749	14,443	9,411	18,834	13,502	11,042
24	45,642	26,465	35,311	39,105	31,108	34,522	19,115	37,887	33,742	31,280
25	36,921	19,392	27,581	31,011	23,709	26,776	10,291	29,563	26,147	23,757
26	6,630	15,928	7,991	4,124	11,853	8,288	21,351	2,694	9,491	11,249
27	23,713	6,881	13,641	16,998	10,159	12,835	5,109	15,668	12,318	10,060
28	24,685	6,757	14,177	17,714	10,460	13,372	5,220	16,490	12,772	10,432
29	25,444	9,387	16,166	19,330	12,782	15,362	2,548	17,833	14,894	12,670
30	26,918	8,232	16,268	19,917	12,363	15,467	4,771	18,734	14,802	12,404
31	27,528	12,621	19,241	22,159	16,007	18,442	0,922	20,484	18,039	15,870
32	6,778	16,187	7,734	3,384	11,889	8,152	22,294	2,945	9,355	11,329

33	10,750	12,254	3,761	1,720	7,855	4,116	19,528	1,736	5,322	7,310
34	3,804	18,736	10,729	6,502	14,677	11,072	23,564	5,516	12,278	14,076

	11	12	13	14	15	16	17	18	19	20
1	19,736	10,728	20,104	17,813	20,104	19,360	12,215	11,418	12,672	34,325
2	2,965	12,233	5,251	6,875	8,978	11,453	10,305	14,115	10,397	15,894
3	6,277	6,905	9,797	8,711	12,468	13,762	3,684	10,558	1,961	24,289
4	10,657	6,097	13,042	11,320	14,806	15,396	4,310	9,720	3,238	27,890
5	1,892	9,089	6,809	6,823	10,306	12,267	6,404	11,955	5,924	20,300
6	5,554	6,690	8,995	7,951	11,713	13,066	3,491	10,237	2,189	23,488
7	13,502	16,444	8,581	9,927	6,637	7,457	16,938	15,297	18,373	8,034
8	10,465	3,655	11,764	9,769	12,985	13,281	3,045	7,168	3,451	26,582
9	4,591	7,642	8,601	7,868	11,610	13,168	4,520	11,047	3,396	22,804
10	2,133	8,404	6,552	6,358	9,928	11,805	5,756	11,275	5,397	20,384
11	0	9,791	5,387	5,965	9,093	11,270	7,524	12,190	7,452	18,415
12	9,791	0	9,377	7,105	9,806	9,779	3,223	3,791	5,178	23,824
13	5,387	9,377	0	2,368	3,805	6,212	8,850	10,026	9,985	14,862
14	5,965	7,105	2,368	0	3,762	5,448	7,022	7,689	8,479	16,835
15	9,093	9,806	3,805	3,762	0	2,562	10,504	8,950	12,135	14,236
16	11,270	9,779	6,212	5,448	2,562	0	11,224	7,947	13,090	15,452
17	7,524	3,223	8,850	7,022	10,504	11,224	0	6,900	2,091	23,710
18	12,190	3,791	10,026	7,689	8,950	7,947	6,900	0	8,934	23,146
19	7,452	5,178	9,985	8,479	12,135	13,090	2,091	8,934	0	24,774
20	18,415	23,824	14,862	16,835	14,236	15,452	23,710	23,146	24,774	0
21	18,038	21,224	13,365	14,789	11,436	11,863	21,799	19,809	23,225	5,347
22	5,244	14,103	5,936	8,027	9,240	11,800	12,419	15,611	12,637	13,883
23	8,912	17,109	8,035	10,388	10,309	12,767	15,789	18,061	16,200	10,562
24	29,218	35,165	26,134	28,162	25,538	26,566	34,980	34,391	35,943	11,341
25	21,835	26,623	17,977	19,795	16,860	17,692	26,771	25,583	27,954	3,577
26	13,123	4,910	13,993	11,841	14,715	14,602	5,623	7,400	6,102	28,657
27	8,422	13,049	3,956	5,964	4,399	6,723	12,792	13,003	13,931	10,920
28	8,648	13,989	4,726	6,885	5,508	7,805	13,565	14,070	14,594	10,180
29	11,048	14,955	6,382	8,067	5,398	7,034	15,062	14,348	16,341	8,886
30	10,499	16,233	6,971	9,131	7,420	9,472	15,797	16,197	16,773	8,022

31	14,295	17,362	9,453	10,841	7,556	8,303	17,855	16,177	19,278	7,280
32	13,305	5,939	14,674	12,618	15,672	15,711	5,985	8,710	5,984	29,451
33	9,331	4,658	11,372	9,609	13,087	13,709	2,592	8,406	1,940	26,231
34	15,946	7,255	16,578	14,349	16,948	16,524	8,434	8,790	8,883	31,065

	21	22	23	24	25	26	27	28	29	30
1	31,216	24,557	27,753	45,642	36,921	6,630	23,713	24,685	25,444	26,918
2	16,123	2,291	5,996	26,465	19,392	15,928	6,881	6,757	9,387	8,232
3	23,162	11,519	15,183	35,311	27,581	7,991	13,641	14,177	16,166	16,268
4	26,105	15,864	19,437	39,105	31,011	4,124	16,998	17,714	19,330	19,917
5	19,802	7,049	10,749	31,108	23,709	11,853	10,159	10,460	12,782	12,363
6	22,360	10,796	14,443	34,522	26,776	8,288	12,835	13,372	15,362	15,467
7	4,862	10,817	9,411	19,115	10,291	21,351	5,109	5,220	2,548	4,771
8	24,404	15,447	18,834	37,887	29,563	2,694	15,668	16,490	17,833	18,734
9	21,924	9,818	13,502	33,742	26,147	9,491	12,318	12,772	14,894	14,802
10	19,704	7,376	11,042	31,280	23,757	11,249	10,060	10,432	12,670	12,404
11	18,038	5,244	8,912	29,218	21,835	13,123	8,422	8,648	11,048	10,499
12	21,224	14,103	17,109	35,165	26,623	4,910	13,049	13,989	14,955	16,233
13	13,365	5,936	8,035	26,134	17,977	13,993	3,956	4,726	6,382	6,971
14	14,789	8,027	10,388	28,162	19,795	11,841	5,964	6,885	8,067	9,131
15	11,436	9,240	10,309	25,538	16,860	14,715	4,399	5,508	5,398	7,420
16	11,863	11,800	12,767	26,566	17,692	14,602	6,723	7,805	7,034	9,472
17	21,799	12,419	15,789	34,980	26,771	5,623	12,792	13,565	15,062	15,797
18	19,809	15,611	18,061	34,391	25,583	7,400	13,003	14,070	14,348	16,197
19	23,225	12,637	16,200	35,943	27,954	6,102	13,931	14,594	16,341	16,773
20	5,347	13,883	10,562	11,341	3,577	28,657	10,920	10,180	8,886	8,022
21	0	14,617	12,244	15,054	6,103	26,133	9,646	9,425	7,035	8,026
22	14,617	0	3,718	24,260	17,424	18,031	6,103	5,627	8,298	6,594
23	12,244	3,718	0	20,593	14,139	21,340	6,100	5,110	7,237	4,643
24	15,054	24,260	20,593	0	8,961	39,994	22,221	21,415	20,221	19,192
25	6,103	17,424	14,139	8,961	0	31,510	14,024	13,405	11,729	11,353
26	26,133	18,031	21,340	39,994	31,510	0	17,804	18,692	19,814	20,943
27	9,646	6,103	6,100	22,221	14,024	17,804	0	1,109	2,627	3,217
28	9,425	5,627	5,110	21,415	13,405	18,692	1,109	0	2,679	2,251

29	7,035	8,298	7,237	20,221	11,729	19,814	2,627	2,679	0	2,811
30	8,026	6,594	4,643	19,192	11,353	20,943	3,217	2,251	2,811	0
31	3,949	11,393	9,723	18,264	9,406	22,271	5,876	5,869	3,259	5,098
32	27,107	18,355	21,770	40,771	32,380	1,375	18,552	19,396	20,657	21,644
33	24,390	14,466	17,976	37,471	29,327	4,234	15,325	16,063	17,633	18,279
34	28,269	20,818	24,079	42,405	33,806	2,827	20,302	21,232	22,186	23,479

	31	32	33	34
1	27,528	6,778	10,750	3,804
2	12,621	16,187	12,254	18,736
3	19,241	7,734	3,761	10,729
4	22,159	3,384	1,720	6,502
5	16,007	11,889	7,855	14,677
6	18,442	8,152	4,116	11,072
7	0,922	22,294	19,528	23,564
8	20,484	2,945	1,736	5,516
9	18,039	9,355	5,322	12,278
10	15,870	11,329	7,310	14,076
11	14,295	13,305	9,331	15,946
12	17,362	5,939	4,658	7,255
13	9,453	14,674	11,372	16,578
14	10,841	12,618	9,609	14,349
15	7,556	15,672	13,087	16,948
16	8,303	15,711	13,709	16,524
17	17,855	5,985	2,592	8,434
18	16,177	8,710	8,406	8,790
19	19,278	5,984	1,940	8,883
20	7,280	29,451	26,231	31,065
21	3,949	27,107	24,390	28,269
22	11,393	18,355	14,466	20,818
23	9,723	21,770	17,976	24,079
24	18,264	40,771	37,471	42,405
25	9,406	32,380	29,327	33,806
26	22,271	1,375	4,234	2,827

27	5,876	18,552	15,325	20,302
28	5,869	19,396	16,063	21,232
29	3,259	20,657	17,633	22,186
30	5,098	21,644	18,279	23,479
31	0	23,215	20,445	24,475
32	23,215	0	4,044	3,119
33	20,445	4,044	0	6,973
34	24,475	3,119	6,973	0

Lampiran 4. Nilai Bandwidth Per Wilayah

NO	PROVINSI	BANDWIDTH
1	ACEH	25,4446
2	BALI	14,1154
3	BANTEN	15,1833
4	BENGKULU	19,3298
5	DI YOGYAKARTA	12,7822
6	DKI JAKARTA	14,8603
7	GORONTALO	18,3727
8	JAMBI	17,8335
9	JAWA BARAT	14,8019
10	JAWA TENGAH	12,6706
11	JAWA TIMUR	13,3051
12	KALIMANTAN BARAT	14,9548
13	KALIMANTAN	13,0418
14	SELATAN KALIMANTAN TENGAH	11,3203
15	KALIMANTAN TIMUR	13,0867
16	KALIMANTAN UTARA	13,7623
17	KEP, BANGKA BELITUNG	15,0623
18	KEP, RIAU	15,2971
19	LAMPUNG	16,1997
20	MALUKU	24,2887
21	MALUKU UTARA	23,1617
22	NUSA TENGGARA BARAT	15,4475
23	NUSA TENGGARA TIMUR	17,9758
24	PAPUA BARAT	35,3106
25	PAPUA	27,5807
26	RIAU	19,8140

NO	PROVINSI	BANDWIDTH
27	SULAWESI BARAT	14,0241
28	SULAWESI SELATAN	14,5946
29	SULAWESI TENGAH	16,3412
30	SULAWESI TENGGARA	16,7731
31	SULAWESI UTARA	19,2414
32	SUMATERA BARAT	20,6573
33	SUMATERA SELATAN	17,6328
34	SUMATERA UTARA	22,1858

Lampiran 5. Matriks Pembobot Setiap Wilayah

	1	2	3	4	5	6	7	8	9	10
1	1,000	0,029	0,542	0,823	0,235	0,514	0,000	0,860	0,419	0,279
2	0,000	1,000	0,373	0,001	0,889	0,475	0,062	0,004	0,611	0,866
3	0,002	0,466	1,000	0,918	0,923	1,000	0,000	0,872	0,995	0,940
4	0,628	0,276	0,960	1,000	0,723	0,943	0,000	0,993	0,898	0,761
5	0,000	0,853	0,873	0,270	1,000	0,919	0,000	0,252	0,969	1,000
6	0,000	0,535	1,000	0,878	0,948	1,000	0,000	0,846	0,998	0,964
7	0,000	0,383	0,000	0,000	0,082	0,002	1,000	0,000	0,006	0,092
8	0,630	0,200	0,920	0,991	0,646	0,909	0,000	1,000	0,842	0,703
9	0,000	0,655	0,995	0,783	0,980	0,998	0,000	0,735	1,000	0,986
10	0,000	0,818	0,899	0,330	1,000	0,942	0,000	0,331	0,978	1,000
11	0,000	0,967	0,717	0,115	0,991	0,797	0,000	0,135	0,882	0,988
12	0,251	0,093	0,733	0,810	0,466	0,755	0,000	0,957	0,651	0,556
13	0,000	0,817	0,191	0,000	0,631	0,303	0,366	0,019	0,363	0,666
14	0,000	0,467	0,161	0,000	0,476	0,279	0,035	0,046	0,293	0,557
15	0,000	0,310	0,002	0,000	0,134	0,023	0,657	0,000	0,028	0,179
16	0,000	0,076	0,000	0,000	0,025	0,003	0,595	0,001	0,002	0,050
17	0,102	0,314	0,957	0,931	0,787	0,963	0,000	0,975	0,921	0,842
18	0,199	0,010	0,302	0,411	0,143	0,343	0,000	0,722	0,242	0,216
19	0,142	0,398	0,995	0,976	0,860	0,993	0,000	0,971	0,973	0,893
20	0,000	0,373	0,000	0,000	0,072	0,001	0,895	0,000	0,005	0,068
21	0,000	0,291	0,000	0,000	0,053	0,001	0,973	0,000	0,004	0,057
22	0,000	0,990	0,201	0,000	0,741	0,286	0,283	0,000	0,411	0,708
23	0,000	0,893	0,063	0,000	0,486	0,112	0,628	0,000	0,191	0,453
24	0,000	0,194	0,000	0,000	0,032	0,000	0,596	0,000	0,002	0,028
25	0,000	0,278	0,000	0,000	0,049	0,001	0,852	0,000	0,003	0,047
26	0,892	0,111	0,816	0,973	0,485	0,796	0,000	0,992	0,705	0,545
27	0,000	0,686	0,001	0,000	0,238	0,013	0,862	0,000	0,033	0,251
28	0,000	0,731	0,001	0,000	0,252	0,012	0,869	0,000	0,036	0,256
29	0,000	0,532	0,000	0,000	0,142	0,005	0,989	0,000	0,014	0,152

30	0,000	0,686	0,001	0,000	0,216	0,010	0,933	0,000	0,031	0,211
J 1				0,000						
32	0,898	0,140	0,851	0,987	0,530	0,827	0,000	0,991	0,746	0,582
33	0,463	0,293	0,971	0,997	0,758	0,962	0,000	0,997	0,920	0,801
34	0,985	0,063	0,698	0,926	0,359	0,672	0,000	0,955	0,573	0,413

							I	I		
	11	12	13	14	15	16	17	18	19	20
1	0,152	0,792	0,130	0,283	0,130	0,175	0,703	0,753	0,673	0,000
2	0,972	0,043	0,853	0,692	0,410	0,101	0,228	0,000	0,216	0,000
3	0,803	0,744	0,391	0,534	0,089	0,017	0,958	0,292	0,994	0,000
4	0,577	0,909	0,333	0,510	0,167	0,121	0,967	0,665	0,986	0,000
5	0,990	0,263	0,612	0,610	0,108	0,002	0,668	0,006	0,730	0,000
6	0,851	0,750	0,471	0,607	0,133	0,033	0,962	0,305	0,990	0,000
7	0,219	0,023	0,724	0,598	0,865	0,812	0,010	0,076	0,000	0,770
8	0,508	0,974	0,362	0,583	0,231	0,202	0,985	0,818	0,978	0,000
9	0,913	0,641	0,519	0,614	0,139	0,026	0,917	0,200	0,964	0,000
10	0,986	0,355	0,640	0,667	0,140	0,007	0,744	0,026	0,786	0,000
11	1,000	0,218	0,814	0,753	0,316	0,060	0,550	0,012	0,560	0,000
12	0,372	1,000	0,428	0,712	0,370	0,374	0,970	0,952	0,881	0,000
13	0,803	0,248	1,000	0,982	0,927	0,710	0,325	0,162	0,167	0,000
14	0,622	0,427	0,973	1,000	0,894	0,702	0,441	0,324	0,195	0,000
15	0,293	0,194	0,928	0,930	1,000	0,978	0,113	0,315	0,008	0,000
16	0,092	0,264	0,749	0,825	0,981	1,000	0,096	0,527	0,003	0,000
17	0,671	0,971	0,507	0,726	0,289	0,201	1,000	0,738	0,992	0,000
18	0,120	0,955	0,371	0,665	0,511	0,636	0,749	1,000	0,514	0,000
19	0,735	0,905	0,449	0,629	0,195	0,105	0,994	0,577	1,000	0,000
20	0,180	0,000	0,458	0,297	0,509	0,409	0,000	0,002	0,000	1,000
21	0,147	0,012	0,527	0,405	0,681	0,649	0,005	0,053	0,000	0,964
22	0,887	0,014	0,839	0,635	0,486	0,170	0,111	0,000	0,093	0,021
23	0,677	0,003	0,755	0,526	0,534	0,264	0,033	0,000	0,019	0,507
24	0,081	0,000	0,210	0,120	0,240	0,189	0,000	0,000	0,000	0,904
					0.5		•			

25	0,128	0,001	0,378	0,250	0,459	0,399	0,001	0,008	0,000	0,993
26	0,357	0,955	0,272	0,487	0,206	0,216	0,933	0,852	0,915	0,000
27	0,481	0,007	0,934	0,787	0,910	0,705	0,014	0,008	0,000	0,147
28	0,497	0,002	0,902	0,717	0,847	0,608	0,008	0,001	0,000	0,288
29	0,330	0,013	0,832	0,681	0,896	0,779	0,010	0,034	0,000	0,591
30	0,430	0,001	0,800	0,590	0,762	0,551	0,004	0,001	0,000	0,706
31	0,205	0,019	0,685	0,554	0,829	0,778	0,008	0,067	0,000	0,846
32	0,394	0,930	0,264	0,460	0,179	0,176	0,929	0,792	0,929	0,000
33	0,618	0,946	0,392	0,589	0,207	0,149	0,991	0,709	0,996	0,000
34	0,249	0,899	0,198	0,388	0,170	0,202	0,844	0,825	0,820	0,000

	21	22	23	24	25	26	27	28	29	30
1	c	0,001	0,000	0,000	0,000	0,948	0,007	0,001	0,000	0,000
2	0,000	0,987	0,787	0,000	0,000	0,000	0,691	0,706	0,352	0,515
3	0,000	0,179	0,000	0,000	0,000	0,623	0,021	0,006	0,000	0,000
4	0,000	0,089	0,000	0,000	0,000	0,971	0,033	0,012	0,000	0,000
5	0,000	0,577	0,067	0,000	0,000	0,008	0,123	0,092	0,000	0,001
6	0,000	0,234	0,001	0,000	0,000	0,565	0,045	0,020	0,000	0,000
7	0,945	0,504	0,649	0,000	0,560	0,000	0,937	0,933	0,992	0,948
8	0,000	0,043	0,000	0,000	0,000	0,990	0,033	0,009	0,000	0,000
9	0,000	0,355	0,014	0,000	0,000	0,399	0,076	0,046	0,000	0,000
10	0,000	0,517	0,039	0,000	0,000	0,027	0,125	0,086	0,000	0,000
11	0,000	0,827	0,342	0,000	0,000	0,000	0,416	0,382	0,078	0,132
12	0,000	0,004	0,000	0,000	0,000	0,898	0,038	0,006	0,000	0,000
13	0,000	0,743	0,450	0,000	0,000	0,000	0,919	0,864	0,688	0,608
14	0,000	0,266	0,012	0,000	0,000	0,000	0,622	0,466	0,260	0,107
15	0,037	0,272	0,134	0,000	0,000	0,000	0,890	0,793	0,804	0,547
16	0,046	0,051	0,008	0,000	0,000	0,000	0,689	0,547	0,650	0,306
17	0,000	0,085	0,000	0,000	0,000	0,852	0,058	0,020	0,000	0,000
18	0,000	0,000	0,000	0,000	0,000	0,697	0,057	0,011	0,005	0,000
19	0,000	0,145	0,000	0,000	0,000	0,848	0,048	0,019	0,000	0,000

20	0,968	0,538	0,773	0,725	0,990	0,000	0,751	0,795	0,860	0,896
21	1,000	0,420	0,619	0,382	0,946	0,000	0,799	0,811	0,918	0,880
22	0,004	1,000	0,959	0,000	0,000	0,000	0,826	0,862	0,603	0,784
23	0,320	0,974	1,000	0,000	0,135	0,000	0,887	0,933	0,817	0,949
24	0,785	0,308	0,515	1,000	0,952	0,000	0,423	0,469	0,536	0,592
25	0,968	0,418	0,648	0,901	1,000	0,000	0,655	0,694	0,787	0,805
26	0,000	0,015	0,000	0,000	0,000	1,000	0,021	0,004	0,000	0,000
27	0,307	0,773	0,773	0,000	0,000	0,000	1,000	0,999	0,980	0,964
28	0,390	0,838	0,877	0,000	0,011	0,000	0,999	1,000	0,982	0,989
29	0,779	0,656	0,761	0,000	0,250	0,000	0,988	0,987	1,000	0,985
30	0,706	0,829	0,938	0,000	0,328	0,000	0,979	0,993	0,986	1,000
31	0,974	0,498	0,661	0,003	0,689	0,000	0,917	0,917	0,985	0,945
32	0,000	0,027	0,000	0,000	0,000	0,999	0,021	0,005	0,000	0,000
33	0,000	0,090	0,000	0,000	0,000	0,959	0,041	0,015	0,000	0,000
34	0,000	0,005	0,000	0,000	0,000	0,994	0,013	0,002	0,000	0,000

	31	32	33	34
1	0,000	0,944	0,790	0,990
2	0,023	0,000	0,041	0,000
3	0,000	0,654	0,955	0,271
4	0,000	0,984	0,998	0,890
5	0,000	0,007	0,453	0,000
6	0,000	0,582	0,938	0,202
7	1,000	0,000	0,000	0,000
8	0,000	0,987	0,997	0,914
9	0,000	0,418	0,867	0,079
10	0,000	0,023	0,527	0,000
11	0,000	0,000	0,281	0,000
12	0,000	0,824	0,912	0,695
13	0,237	0,000	0,038	0,000
14	0,002	0,000	0,059	0,000

15	0,527	0,000	0,000	0,000
16	0,475	0,000	0,000	0,000
17	0,000	0,823	0,985	0,560
18	0,000	0,542	0,580	0,532
19	0,000	0,856	0,995	0,582
20	0,921	0,000	0,000	0,000
21	0,985	0,000	0,000	0,000
22	0,215	0,000	0,006	0,000
23	0,596	0,000	0,000	0,000
24	0,640	0,000	0,000	0,000
25	0,886	0,000	0,000	0,000
26	0,000	0,999	0,971	0,991
27	0,795	0,000	0,000	0,000
28	0,817	0,000	0,000	0,000
29	0,976	0,000	0,000	0,000
30	0,918	0,000	0,000	0,000
31	1,000	0,000	0,000	0,000
32	0,000	1,000	0,978	0,990
33	0,000	0,964	1,000	0,826
34	0,000	0,992	0,910	1,000

Lampiran 6. Estimasi Parameter Model GWR Setiap Wilayah

PROVINSI	KONS.	XI	X2	X3	X4	X5	9X	X7	8X	6X
Aceh	-42,6918	-0,4262	1,4489	35,3068	-0,4335	-0,7615	0,5909	-0,1311	0,1282	8,3288
Bali	-185,5637	-0,7902	1,1584	70,4585	-0,2322	0,9374	1,3215	1,0980	-0,1103	0,2136
Banten	-57,4982	-0,6469	1,1218	-0,2260	-0,2951	0,0251	0,9192	0,0709	-0,0639	1,3423
Bengkulu	-59,6525	-0,4615	1,4353	-6,7566	-0,2879	-0,3883	0,7309	0,0065	-0,0733	3,8678
Di yogyakarta	-145,4503	-0,5748	1,1273	69,4661	-0,0704	0,6759	1,1346	0,4037	-0,1137	-0,9084
Dki jakarta	-67,9337	-0,6449	1,1009	8,8495	-0,2507	0,1396	0,9244	0,0999	-0,0641	0,8446
Gorontalo	-66,6043	-0,7196	1,0188	3,6159	-0,3967	0,1153	0,7587	0,8093	0,0193	0,6318
Jambi	-53,8017	-0,4597	1,3093	11,0368	-0,3027	-0,4277 0,6692	0,6692	-0,0236	0,0143	5,2491
Jawa barat	-83,6451	-0,6402	1,0997	21,9814	-0,2049	0,2947	0,9802	0,1563	-0,0836	-0,1229
Jawa tengah	-137,4313	-0,5669	1,0473	64,2008	-0,0658	0,6755	1,0682	0,3588	-0,0954	-0,6127
Jawa timur	-163,9003	-0,6619	1,0069	69,3301	-0,1226	0,8884	1,1283	0,6653	-0,0336	0,0466
Kalimantan barat	-47,9596	-0,5820	0,9843	14,3181	-0,3188	-0,2285	0,6178	-0,0441	0,1818	6,0748
Kalimantan selatan	-167.5012	-0.7570	1.1477	62.3415	-0.2383	0.8499	1.0360	1.0320	-0.0632	0.2896
Kalimantan)	,	0)	,	, 1040	,		
tengah	-1/4,8321	-0,7722	1,1391	77,2424	-0,0903	0,9082	1,1049	0,9242	-0,1912	0,5637

Kalimantan timur	-135,6564	-0,7964	1,5780	35,0650	-0,5147	0,3786	0,7792	0,9234	0,0587	0,5426
Kalimantan utara	-75,9688	-0,9421	1,3186	0800'6	-0,7441	0,2506	0,5478	0,9216	0,0706	0,6214
Kep, bangka belitung	-55,8978	-0,5991	1,0630	-2,3964	-0,2730	-0,0797	0,7591	0,0234	0,0343	3,4242
Kep, riau	-49,5062	-0,7726	0,7893	-4,7901	-0,2889	0,0986	0,7057	0,0336	0,1721	4,2442
Lampung	-60,8783	-0,5929	1,2074	-0,1105	-0,2706	-0,0811	0,8198	0,0422	-0,0457	2,3684
Maluku	-46,5422	-0,5323	0,7640	9,8451	-0,1016	-0,0266	0,5623	0,6898	-0,0192	0,4849
Maluku utara	-42,8083	-0,5822	0,7449	9,4070	-0,2087	-0,0018	0,5917	0,7125	-0,0070	0,5139
Nusa tenggara barat	-170,1573	-0,7896	1,0395	9966'85	-0,2572	0,9163	1,1988	1,0817	-0,0317	0,2467
Nusa tenggara										
timur	-108,1649	-0,8209	1,1119	22,8405	-0,2492	0,2884	1,0842	0,8761	0,0485	0,6332
Papua barat	-41,2846	-0,4297	0,6936	5,3328	-0,0469	-0,0648	0,4166	0,6195	0,0573	0,4901
Papua	-39,5474	-0,4976	0,6856	8,5941	-0,0962	-0,0432	0,4934	0,6558	0,0155	0,4836
Riau	-48,2450	-0,4292	1,3463	20,5501	-0,3486	-0,5830	0,6181	-0,0665	0,0658	6,7157
Sulawesi barat	-130.4568	-0.8604	1.5329	18,4280	-0.4609	0.2718	6256.0	0.7845	0.2804	0.6584
Sulawesi selatan	-111,1183	-0,8910	1,2453	10,4870	-0,3961	0,3110	0,9661	0,7590	0,2911	0,6753
										1

Sulawesi										
tengah	-81,1591	-0,7772 1,1050 6,7678	1,1050	6,7678	-0,3841 0,1706 0,8380 0,8027 0,0774	0,1706	0,8380	0,8027	0,0774	0,6464
Sulawesi										
tenggara	-83,3459	-0,7651 1,0582	1,0582	6862'6		0,1817	0,8914	0,8304	-0,3009 0,1817 0,8914 0,8304 0,0238	0,6335
Sulawesi										
utara	-63,1514	-0,7016 0,9783 2,9228	0,9783	2,9228		0,1066	0,7413	0,8067	-0,3797 0,1066 0,7413 0,8067 0,0093	0,6270
Sumatera				1						
barat	-49,4416	-0,4236 1,3967	1,3967	18,9530		-0,5835	0,6441	-0,0532	-0,3424 -0,5835 0,6441 -0,0532 0,0234 6,1914	6,1914
Sumatera										
selatan	-59,2962	-0,4957	1,3361	-0,4957 1,3361 -4,7818	-0,2792 -0,3053 0,7367 0,0109 -0,0449	-0,3053	0,7367	0,0109	-0,0449	3,7758
Sumatera				1						
utara	-44,6718	-0,4266	1,3899	-0,4266 1,3899 28,1892	-0,3913 -0,6792 0,6003 -0,0991 0,0997 7,5928	-0,6792	0,6003	-0,0991	0,0997	7,5928

Lampiran 7. Nilai t Hitung GWR

PROVINSI	X_1	X_2	X_3	X_4	X_5	X_6	X_7	X_8	X ₉
Aceh	-1,3203	1,6188	-0,9453	-1,6685	-1,3553	1,3830	-0,5731	-0,5731	2,3972
Bali	-2,6574	-2,6574 0,8717	1,9369	-1,0137		1,1425 2,9555	3,4748	3,4748	0,4135
Banten	-2,3952	<mark>-2,3952</mark> 1,2470		-0,0065 -1,1376		0,0450 2,1185	0,3294	0,3294	0,6222
Bengkulu	-1,8119	-1,8119 1,7348		-1,1842	-0,2049 -1,1842 -0,7564 1,8032	1,8032	0,0304	0,0304	1,6608
Di yogyakarta	-1,8321 0,9325	0,9325	1,6707	1,6707 -0,2610		0,9928 2,4225	1,7486	1,7486	-0,6197
Dki jakarta	-2,4424	<mark>-2,4424</mark> 1,2369	0,2632	0,2632 -1,0049	0,2596	0,2596 2,2550	0,4716	0,4716	0,4326
Gorontalo	-2,8677	<mark>-2,8677</mark> 1,3669	0,1035	0,1035 -1,4207	0,3312	0,3312 2,1169	3,2197	3,2197	2,1094
Jambi	-1,7261	<mark>-1,7261</mark> 1,5762	-0,3370	-1,2717	-0,3370 -1,2717 -0,8467 1,6748	1,6748	-0,1107	-0,1107	2,0363
Jawa barat	-2,4203	1,1966	0,6496	0,6496 -0,8304	0,5473 2,4263	2,4263	0,7455	0,7455	-0,0717
Jawa tengah	-1,8573	0,9199	1,5775	-0,2468	1,0563	1,0563 2,4261	1,6126	1,6126	-0,4041
Jawa timur	-2,2482	0,8486	1,9362	-0,5501	1,2727	2,6497	2,6899	2,6899	0,0717
Kalimantan barat	-1,9575	1,1787	-0,4410	-1,3640	-0,4632	1,5561	-0,2055	-0,2055	2,1411
Kalimantan selatan	-2,7620	<mark>-2,7620</mark> 1,1215	1,8881	-1,1098	1,2384	1,2384 2,9149	3,9798	3,9798	0,5776
Kalimantan tengah	-2,7227	<mark>-2,7227</mark> 1,0415	2,2185	-0,3932	1,2204	1,2204 2,9199	3,0685	3,0685	1,1065
Kalimantan timur	-2,5472	<mark>-2,5472</mark> 1,7861	0,9601	0,9601 -1,8827	0,7862	0,7862 2,2188	3,2752	3,2752	1,4851
Kalimantan utara	-2,5708	<mark>-2,5708</mark> 1,3987	0,2064	0,2064 -2,0881	0,4988	1,4576	3,1196	3,1196	1,8185
Kep, bangka belitung	-2,2426	1,2779	-0,0763	-2,2426 1,2779 -0,0763 -1,1781	-0,1591 1,9764	1,9764	0,1122	0,1122	1,5338
Kep, riau	-2,3860	0,9277	-0,1526	-2,3860 0,9277 - 0,1526 - 1,2281		0,2012 1,9040	0,1606	0,1606	2,3591

PROVINSI	X_1	X_2	X_3	X_4	X5	X_6	X_7	X_8	X ₉
Lampung	-2,3326	1,4471	-0,0034	-1,1325	-0.1587 2,0834	2,0834	0,2014	0,2014	1,1398
Maluku	-2,1875	<mark>-2,1875</mark> 0,9859		-0,4015	0,2755 -0,4015 -0,0782 1,5243	1,5243	2,7773	2,7773	1,7697
Maluku utara	-2,3462	<mark>-2,3462</mark> 0,9652		-0,8047	0,2694 -0,8047 -0,0053 1,6282	1,6282	2,8708	2,8708	1,8644
Nusa tenggara barat	-2,7653	<mark>-2,7653</mark> 0,9324		-1,1306	1,5907 -1,1306 1,2862 3,0518	3,0518	3,7391	3,7391	0,5100
Nusa tenggara timur	-3,3525 1,6119	1,6119	0,6760	0,6760 -1,0871	0,8354 3,1017	3,1017	3,4707	3,4707	2,1079
Papua barat	-1,7311	0,8742	0,1454	0,1454 -0,1808	-0,1875 1,0861	1,0861	2,4185	2,4185	1,7686
Papua	-2,0183	0,8737	0,2384	-0,3729	-0,1265 1,3242	1,3242	2,6146	2,6146	1,7654
Riau	-1,4852	-1,4852 1,5795	-0,5988	-1,4264	-0,5988 -1,4264 -1,1130 1,5066	1,5066	-0,3041	-0,3041	2,2803
Sulawesi barat	-2,9979	1,8752	0,4935	-1,8111	2,9979 1,8752 0,4935 -1,8111 0,7037 2,7241	2,7241	2,7647	2,7647	2,1327
Sulawesi selatan	-3,2164	-3,2164 1,6519		0,2884 -1,5782	0,8324 2,7303	2,7303	2,7174	2,7174	2,2022
Sulawesi tengah	-3,1184 1,5142	1,5142	0,1945	0,1945 -1,4447	0,4887 2,3558	2,3558	3,1790	3,1790	2,1565
Sulawesi tenggara	-3,1160	1,4565	0,2818	-1,1689	0,5241	2,4916	3,3070	3,3070	2,1167
Sulawesi utara	-2,7908	<mark>-2,7908</mark> 1,2976		0,0832 -1,3529		0,3058 2,0594	3,2029	3,2029	2,0962
Sumatera barat	-1,4984	1,6450	-0,5524	-1,3913	-1,1065	1,5628	-1,4984 1,6450 -0,5524 -1,3913 -1,1065 1,5628 -0,2443	-0,2443	2,1843
Sumatera selatan	-1,9667	1,6243	-0,1482	-1,1729	-1,9667 1,6243 -0,1482 -1,1729 -0,6071 1,8582	1,8582	0,0515	0,0515	1,6543
Sumatera utara	-1,3935	1,5934	-0,7874	-1,5552	-1,2528	1,4331	-1,3935 1,5934 -0,7874 -1,5552 -1,2528 1,4331 -0,4433	-0,4433	2,3644

Kolom warna kuning: Signifikan

Lampiran 8. Syntax beserta Output Program R

```
#PANGGIL LIBRARY
library(car)
library(lmtest)
library(spgwr)
library(fBasics)
library(unmarked)
library(AICcmodavg)
library(foreign)
library(lattice)
library(zoo)
library(ape)
library(Matrix)
library(mvtnorm)
library(emulator)
library(MLmetrics)
library(GWmodel)
library(sp)
library(readxl)
library(MASS)
library(skedastic)
```

```
> head(dt,5)
        A tibble: 5 × 13
         Provinsi
                                                                                                                     X1
                                                                                                                                                  X2
                                                                                                                                                                               X3
                                                                                                                                                                                                           X4
                                                                                                                                                                                                                                         X5
                                                                                                                                                                                                                                                                       X6
                                                                                                                                                                                                                                                                                                  X7
                                                                                                                                                                                                                                                                                                                               X8
                                                                                                                                                                                                                                                                                                                                                             X9
                                                                          <dbl> <
         (chr)
1 ACFH
                                                                               11.1 46.2 72.2 0.216 42.9 80.8 34.9 30.5 54.1 4.21 96.7 4.70
2 BALI
                                                                               16.4 69.6
                                                                                                                                         74.5 0.209
                                                                                                                                                                                                  43.2
                                                                                                                                                                                                                               83.2
                                                                                                                                                                                                                                                            39.1
                                                                                                                                                                                                                                                                                        36.4
                                                                                                                                                                                                                                                                                                                     51.2
                                                                                                                                                                                                                                                                                                                                                   4.84 115.
                                                                                                                                                                                                                                                                                                                                                                                                     -8.34
3 BANTEN
                                                                               17.6 47.2
                                                                                                                                        72.4 0.261 40.1
                                                                                                                                                                                                                                                            31.7
                                                                                                                                                                                                                                                                                        35.8
                                                                                                                                                                                                                                                                                                                 42.2
                                                                                                                                                                                                                                                                                                                                                                                                         -6.41
                                                                                                                                                                                                                               78.8
                                                                                                                                                                                                                                                                                                                                              5.03 106.
4 BENGKULU
                                                                               15.6 54.4 71.7 0.318 38.7
                                                                                                                                                                                                                              73.2 35.3 23.2 53.3 4.31 102.
                                                                                                                                                                                                                                                                                                                                                                                                     -3.79
       DI YOGYAKARTA
                                                                                                             63.4
                                                                                                                                         76.9 0.146
                                                                                                                                                                                                  47.1
                                                                                                                                                                                                                                                             41.4
                                                                                                                                                                                                                                                                                                                                                    5.15 110.
                                                                               20
                                                                                                                                                                                                                                85.6
                                                                                                                                                                                                                                                                                           32.9
                                                                                                                                                                                                                                                                                                                       53.1
```

#ANALISIS DESKRIPTIF

summary(dt)

```
: 1.59
                   Min.
                                    Min.
                                            :43.28
                                                     Min.
                                                             :67.60
                                                                      Min.
                                                                              :0.1250
                                                                                         Min.
                                                                                                :28.45
                                                                                                          Min.
                                                                                                                 :62.93
Length: 34
                    1st Qu.:14.61
                                     1st Qu.:47.76
                                                      1st Qu.:71.00
                                                                       1st Qu.:0.2200
                                                                                         1st Qu.:31.45
                                                                                                          1st Qu.:75.61
Class : character
Mode :character
                   Median :19.59
Mean :18.61
                                     Median :52.58
                                                     Median :72.42
                                                                      Median :0.2925
                                                                                         Median :38.24
                                                                                                          Median :78.78
                                    Mean
                                            :53.27
                                                      Mean
                                                             :72.39
                                                                      Mean
                                                                              :0.2718
                                                                                         Mean
                                                                                                :39.50
                                                                                                          Mean
                                                                                                                 :77.95
                    3rd Qu.:21.49
                                     3rd Qu.:56.05
                                                      3rd Qu.:73.85
                                                                       3rd Qu.:0.3187
                                                                                         3rd Qu.:45.90
                                                                                                          3rd Qu.:80.91
                           :33.33
                    Max.
                                    Max.
                                            :69.62
                                                     Max.
                                                             :76.93
                                                                      Max.
                                                                              :0.3720
                                                                                         Max.
                                                                                                :64.51
                                                                                                          Max.
                                                                                                                 :85.62
                       X7
                                       X8
                                                        Х9
                                                                           и.
      :24.92
                        :23.20
                                         : 34 . 91
Min.
                                 Min.
                                                  Min.
                                                          : 2.919
                                                                     Min.
                                                                            : 96.75
                                                                                       Min.
                                                                                              :-8.6574
1st Qu.:30.06
                 1st Qu.:29.27
                                  1st Qu.:47.49
                                                   1st Qu.:
                                                            4.420
                                                                     1st Qu.:106.16
                                                                                       1st Qu.:-5.9096
                                 Median :50.98
Mean :49.82
                                                  Median : 5.100
                                                                     Median :112.81
Mean :113.69
                                                                                       Median :-2.9684
Median : 34.63
                Median :32.73
                        :33.12
                                                          : 5.756
Mean
       :33.53
                 Mean
                                                  Mean
3rd Qu.:36.62
                 3rd Qu.:37.00
                                 3rd Qu.:53.03
                                                  3rd Qu.: 5.340
                                                                     3rd Qu.:120.80
                                                                                       3rd Qu.: 0.4313
                                                           :22.940
                        :46.09
                                         :60.10
                 Max.
                                  Max.
                                                   Max.
                                                                     Max.
```

```
#ANALISIS KORELASI
```

##Koefisien Korelasi

cor(dt[, c('Y','X1', 'X2', 'X3','X4','X5','X6','X7','X8','X9')],method = "pearson")

```
1.00000000 -0.2485824 0.17171824 0.29320341 -0.10399604
                                                                         0.08900075
                                                                                       0.04653719 0.20006167
                                                                                                                   0.10580147 0.37921574
                                                                                                     0.04472090 -0.06810660 -0.10042386
-0.05754627 0.11851171 -0.10572309
                 1.0000000 -0.27760197 -0.18558866 -0.30193126 -0.01506270 -0.2776020 1.00000000 -0.25607724 0.23714719 0.70720906
  -0.24858241
                                                                                       0.61184361
                                                                                       -0.17415531
X2
    0.17171824
X3
    0 29320341 -0 1855887 -0 25607724
                                            1 99999999
                                                          -0 66991810 -0 26435243 -0 32724760 -0 17755430 -0 00819224 0 21340540
                                                                                       -0.07372075 0.26094261
0.11135428 0.03533943
X5
    0.08900075 -0.0150627
                               0.70720906 -0.26435243
                                                           0.02549913
                                                                         1.00000000
                                                                                                                    0.23941866 -0.33595281
    0.04653719 0.6118436 -0.17415531 -0.32724760
                                                          -0.07372075
                                                                         0.11135428
                                                                                                     -0.03587022
                                                                                                                    0.11692101
                                                                                                                                  0.08274470
                  0.0447209 -0.05754627
                                             -0.17755430
                                                                                       -0.03587022
                                                                                                                                 -0.10284376
    0.20006167
                                                           0.26094261 0.03542823
                                                                         0.03533943
                                                                                                     1.00000
                                                                                                                   0.25512511 -0.10284370
1.00000000 -0.17626715
X8
    0.10580147 -0.0681066
                               0.11851171 -0.00819224
                                                                         0.23941866
                                                                                       0.11692101
                                                                                                     0.25512511
```

```
##Uji Korelasi
uji korelasi <-data.frame("Variabel" =
c("X1","X2","X3","X4","X5","X6","X7","X8","X9"),
               "thitung"= c(CorX1=cor.test(X1,Y)$statistic,
                       CorX2=cor.test(X2,Y)$statistic,
                       CorX3=cor.test(X3,Y)$statistic,
                       CorX4=cor.test(X4,Y)$statistic,
                       CorX5=cor.test(X5,Y)$statistic,
                       CorX6=cor.test(X6,Y)$statistic,
                       CorX7 = cor.test(X7,Y)$statistic,
                       CorX8=cor.test(X8,Y)$statistic,
                       CorX9=cor.test(dt$X9,dt$Y)$statistic),
               "pvalue"=c(CorX1=cor.test(X1,Y)$p.value,
                      CorX2 = cor.test(X2,Y)$p.value,
                      CorX3=cor.test(X3,Y)$p.value,
                      CorX4=cor.test(X4,Y)$p.value,
                      CorX5=cor.test(X5,Y)$p.value,
                      CorX6=cor.test(X6,Y)$p.value,
                      CorX7 = cor.test(X7,Y)$p.value,
                      CorX8=cor.test(X8,Y)$p.value,
                      CorX9=cor.test(dt$X9,dt$Y)$p.value))
print(uji korelasi)
```

Variabel <chr></chr>	thitung <dbl></dbl>	pvalue «dbl»
X1	4.5267602	1.270631e-04
X2	6.0151381	2.777377e-06
X3	1.2649173	2.175653e-01
X4	4.9010792	4.814883e-05
X5	-0.1799614	8.586336e-01
X6	-0.9913060	3.310345e-01
X7	1.3511808	1.887397e-01
X8	4.1268086	3.575143e-04
X9	2.3183281	2.697824e-02

#REGRESI OLS

```
#ESTIMASI PARAMETER
regols<-lm(formula=Y~X1+X2+X3+X4+X5+X6+X7+X8+X9,
data=dt)
regols
```

#UJI SIMULTAN, UJI PARSIAL, DAN KOEFISIEN DETERMINASI

summary(regols)

```
Call:
lm(formula = Y \sim X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9)
   data = dt)
Residuals:
    Min
                 Median
             10
                              30
                                     Max
-12.7444 -2.5029
                  0.5354 2.7229
                                  8.5691
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -78.690812 48.434030 -1.625
                                       0.1173
X1
           -0.355268
                      0.230638 -1.540
                                       0.1366
X2
            0.883846 0.705468 1.253
                                       0.2223
           46.969398 27.046646 1.737
X3
                                       0.0953 .
X4
           -0.006726 0.205704 -0.033 0.9742
X5
            0.030332 0.326297 0.093
                                       0.9267
            X6
X7
            0.454253 0.199861 2.273 0.0323 *
           -0.079448 0.215048 -0.369 0.7150
X8
X9
            0.499061 0.322301 1.548 0.1346
Signif. codes: 0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 (, 1
Residual standard error: 5.718 on 24 degrees of freedom
Multiple R-squared: 0.4792,
                            Adjusted R-squared:
F-statistic: 2.454 on 9 and 24 DF, p-value: 0.03828
```

#UJI ASUMSI IIDN

```
#UJI NORMALITAS RESIDUAL
```

resid<-abs(regols\$residuals)

res=regols\$residual

ks.test(res,"pnorm",mean(res),sd(res),alternative=c("two.sided"))

Exact one-sample Kolmogorov-Smirnov test

data: res

D = 0.12762, p-value = 0.5924 alternative hypothesis: two-sided

#UJI RESIDUAL IDENTIK

glejser(regols, auxdesign = NA, sigmaest = c("main", "auxiliary"), statonly = FALSE)

statistic <dbl></dbl>	p.value <dbl></dbl>	parameter <dbl></dbl>	alternative <chr></chr>	
16.94465	0.04958982	9	greater	
	<dbl></dbl>	<dbl> <dbl></dbl></dbl>	<dbl> <dbl> <dbl></dbl></dbl></dbl>	<dbl> <dbl> <dbl> <chr></chr></dbl></dbl></dbl>

```
#UJI RESIDUAL INDEPENDEN

dwtest(lm(regols$residuals~X1+X2+X3+X4+X5+X6+X7+X8+X9,
data = dt))
```

```
Durbin-Watson test

data: lm(regols$residuals ~ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9, data = dt)

DW = 2.3748, p-value = 0.8495
alternative hypothesis: true autocorrelation is greater than 0
```

#GWR

```
#MENCARI JARAK EUCLIDEAN

V=dt[12]

U=dt[13]

V<-as.matrix(V)

U<-as.matrix(U)

j<-nrow(V)

i<-nrow(U)

dij<-matrix(0,34,34)

for (i in 1:34) {
    for (j in 1:34) {
        dij[i,j]<-sqrt((U[i,]-U[j,])**2+(V[i,]-V[j,])**2)
    }
    }
    options(max.print=10000)

dij
```

00 22.502844 14.4911442 10.120324 18.4808034 14.8602910 26.6329387 9.320244 16.066925 17.8786313 19.736044 10.727680 0.000000 4.7578770 8.5174401 11.9316916 13.306467 22.502844 9.2329152 13.613261 7.527513 5.0925741 2.964780 12.232961 14.491144 9.232915 0.0000000 4.614365 4.5214668 0.8060392 18.3588459 5.385683 1.744981 4.1437911 6.276980 6.905034 10.120324 13.613261 4,6143648 0.000000 9.0411577 5.1824099 21.2433073 2.567712 6.334432 8.5652485 10.656685 6.097354 18.480803 4.757877 4.5214668 9.041158 0.0000000 3.8627286 15.1896689 9.160561 2.787884 0.6880569 1.892374 9.089106 8 517440 0.8060392 5 182410 3 8627286 5.621069 3.4267404 5 553742 14 860201 0.0000000 17.5611987 1 206643 7, 26.632939 11.931692 18.3588459 21.243307 15.1896689 17.5611987 0.0000000 19.562560 17.177655 15.0346883 13.502487 16.443762 5.6210687 19.5625604 8.5618098 10.464810 2.567712 0.000000 6.818232 9.320244 13.306467 5.3856831 9.1605615 6.818232 3.654812 7.527513 16.066925 1.7449809 6.334432 2.7878838 1.2066431 17.1776549 2.4721022 4.591146 7.641540 17.878631 5.092574 4.1437911 8.565249 0.6880569 3.4267404 15.0346883 8.561810 2.472102 0.0000000 2.133189 9 49427 2.1331888 2.964780 6.2769796 10.656685 1.8923744 5.5537418 13.5024866 10.464810 4.591146 9.790727 11. 19.736044 0.000000 6.6901507 16.4437620 8.9951516 8.5814651 10.727680 12.232961 6.9050338 6.097354 9.0891058 3.654812 7.641548 8.4942779 9.790727 0.000000 9.7969766 13.041805 8.5814651 11.764423 6.5517672 9.376803 20.104028 5.251401 6.8094972 8.600722 5.386854 6.875004 8.7107599 11.320230 6.8234391 7.9514399 9.9269869 9.769495 7.868009 6.3581814 5.965290 17.813380 7.105127 8.977875 12.4683381 14.806370 10.3060869 11.7126068 6.6373821 12.985291 11.609549 20.104348 9.9276348 9.092953 9.806440 19.360059 11.453053 13.7621826 15.396322 12.2669861 13.0658107 7.4574915 13.281354 13.168362 11.8048674 11.270178 9.779047 3.6840621 4.310127 6.4035807 3.4912837 16.9377116 3.045253 4.519956 12.215400 10.305356 5.7563010 7.523749 3.223021 11.418092 14.115249 10.5581492 9.720260 11.9553173 10.2369450 15.2970199 7,168349 11,046736 11,2749587 12,190291 3 700673 12.672098 10.397364 1.9606612 3.237893 5.9242449 2.1893398 18.3726116 3.451194 3.395538 5.3968555 7.452252 5.178403 19. 8.0343300 26.582074 22.804151 20.3840218 18.415359 23.823697 4.8618071 24.403872 21.923584 19.7040371 18.038153 21.223825 34.325302 15.894455 24.2886601 27.890020 20.3000150 23.4882422 31.216097 16.123153 23.1616885 26.105007 19.8024377 22.3602150 21. 22. 24.556785 2.291094 11.5189395 15.863705 7.0485546 10.7963533 10.8170981 15.447433 9.817817 7.3759289 5.243572 14.102923 5.995797 15.1832262 19.437172 10.7487887 14.4428523 9.4110120 18.834377 13.501663 11.0423464 45.641868 26.465187 35.3105092 39.105268 31.1075895 34.5221593 19.1154293 37.886952 33.742219 31.2799604 29.217823 35.165003 36.921263 19.391966 27.5806425 31.011417 23.7085576 26.7762042 10.2910626 29.562866 26.146988 23.7570788 21.835032 26.623410 26 6.629619 15.928134 7.9914887 4.123567 11.8525877 8.2876047 21.3514059 2.693908 9.490700 11.2490297 13.123021 4.909760 6.881213 13.6412383 16.997810 10.1589567 12.8353256 5.1092705 15.667630 12.318380 10.0603194 8.421739 13.048749 23.713108 24 684812 6 757224 14 1767549 17 713724 19 4692865 13 3719998 5 2198636 16 489945 12 772156 10 4321163 8 648470 13 989443 25.444465 9.387453 16.1663887 19.329809 12.7820415 15.3621902 2.5477021 17.833407 14.894426 12.6704536 11.047920 14.954613 29, 26.918163 8.232089 16.2684578 19.916953 12.3629782 15.4673177 4.7707250 18.733763 14.801850 12.4041082 10.498955 16.233436 30. 27.528199 12.626773 19.2413950 22.159030 16.0074527 18.4421375 0.9218075 20.484152 18.039396 15.8701293 14.294952 17.362483 31. 6.778454 16.187304 7.7338217 3.384383 11.8889803 8.1521309 22.2937409 2.944628 9.355019 11.3288006 13.305045 5.939220 3.7611968 1.720065 7.8545872 4.1158399 19.5282607 1.735663 5.321672 7.3104048 9.331075 4.658195 32. 10.750376 12.253535 3.804102 18.735804 10.7287788 6.502436 14.6767183 11.0719585 23.5641529 5.516158 12.278082 14.0755932 15.945841 7.255364

[,16] [,18] 1,201 [,21] [,22] [,17] 20,104028 17,813380 20,104348 19,360059 12,215400 11,418092 12,672098 34,325302 31,216097 24,556785 27,753148 45,641868 36,92126 6.875004 8.977875 11.453053 10.305356 14.115249 10.397364 15.894455 16.123153 2.291094 5.995797 26.465187 19.391966 1,960661 24,288660 23,161689 11,518940 15,183226 35,310509 27,580642 8.710760 12.468338 13.762183 3.684062 10.558149 9.796977 13.041805 11.320230 14.806370 15.396322 6.809497 6.823439 10.306087 12.266986 4.310127 9.720260 6.403581 11.955317 3.237893 27.898020 26.105007 15.863785 19.437172 39.105268 31.011417 5.924245 20.300015 19.802438 7.048555 10.748789 31.107590 23.708558 8.995152 7.951440 11.712607 13.065811 9.926987 6.637382 7.457491 3.491284 10.236945 2.189340 23.488242 22.360215 10.796353 14.442852 34.522159 26.776204 18.372612 8.034330 4.861807 10.817698 9.411012 19.115429 10.291063 3.451104 26.582074 24.403872 15.447433 18.343377 37.886952 29.562866 16.937712 15.297020 18.372612 11.764423 9,769495 12,985291 13,281354 3.045253 7.168349 4.519956 11.046736 8.600722 7.868009 11.609549 13.168362 3.395538 22.804151 21.923584 9.817817 13.501663 33.742219 26.146988 7.375929 11.042346 31.279960 23.757079 9.927635 11.804867 5.756301 11.274959 5.396856 20.384022 19.704037 10. 6.551767 6.358181 5.386854 5.965290 9.092953 11.270178 7.523749 12.190291 7.452252 18.415359 18.038153 5.243572 8.911795 29.217823 21.835032 5.178403 23.823697 21.223825 14.102923 17.108918 35.165003 26.623416 9.376803 7.105127 9.806440 9.779047 3.223021 3.790672 0.000000 2.367845 3.804734 6.212108 8.850158 10.026460 9,985146 14,862230 13,365083 5,935863 8,034641 26,133851 17,976978 5.447614 7.022165 8.478622 16.835071 14.788513 8.027193 10.387837 28.162316 19.795375 2.36784 3.761998 7.688753 15. 3.804734 3.761998 0.000000 2.562468 10.503951 8.950331 12.135025 14.236100 11.436071 9.239763 10.309345 25.538184 16.85988 6.212108 5.447614 2.562468 0.000000 11.224066 7.022165 10.503951 11.224066 0.000000 7.946572 13.889569 15.451708 11.862863 11.800118 12.766570 26.565900 17.691581 6.899982 2.090963 23.709904 21.798922 12.418531 15.789140 34.980237 26.771020 0.000000 8.850158 7.688753 8.950331 7.946572 8.478622 12.135025 13.089569 10.026460 6,899982 0.000000 8.933535 23.145569 19.808753 15.611222 18.060719 34.391263 25.583013 8.933535 24.773663 23.225410 12.636530 16.199671 35.943071 27.954267 2.090963 0.000000 20. 14.862230 16.835071 14.236100 15.451708 23.709904 23.145569 24.773663 0.000000 5.346977 13.882997 10.561974 11.341307 3.577212 13.365083 14.788513 11.436071 11.862863 21.798922 19.808753 23.225410 5.346977 0.000000 14.617495 12.243553 15.053999 6.102844 3.717726 24.260105 17.423805 22. 5.935863 8.027193 9.239763 11.800118 12.418531 15.611222 12.636530 13.882997 14.617495 0.000000 8.034641 10.387837 10.309345 12.766570 15.789140 18.060719 16.199671 10.561974 12.243553 3 717726 0.000000 20.592830 14.138541 26.133851 28.162316 25.538184 26.565900 34.980237 34.391263 35.943071 11.341307 15.053999 24.260105 20.592830 0.000000 8.961039 3,577212 6,102844 17,423805 14,138541 8,961039 0,000000 17,976978 19,795375 16,859886 17,691581 26,771020 25,583013 27,954267 13.992781 11.841362 14.714605 14.601595 5.622814 7.400129 6.101728 28.656915 3.956133 5.964145 4.399378 6.722656 12.791907 13.002763 13.931168 10.920317 13.992781 11.841362 14.714605 14.601595 6.101728 28.656915 26.133191 18.030787 21.340358 39.993667 31.510047 27. 9.646401 6.102510 6.099697 22.220960 14.023954 4.725550 6 884759 5.508025 7,805060 13,565228 14,069713 14,594395 10,180320 9 425405 5.627278 5,109568 21,415142 13,405182 7.034470 15.062196 14.347860 16.341093 7.236630 20.221221 11.729474 8.067184 5.398027 8.885632 7.035328 29, 6.382226 8.297543 6.970727 9.130833 7.420130 9 471848 15 796523 16 197125 16 772899 8 022045 8.025922 6.594455 4 643484 19 192018 11 353051 31, 8.302820 17.854518 16.176685 19.278072 3.948835 11.393452 9.723249 18.263674 32. 14.673593 12.617529 15.671629 15.711111 5.985033 8.710475 5.983701 29.451441 27.107449 18.354930 21.770130 40.771466 32.380200 9.608593 13.086622 13.708695 2,591555 8,406037 1,939786 26,230999 24,389697 14,466329 17,975814 37,470873 29,32745 11.371621 16.577958 14.348718 16.947793 16.524070 8.434006 8.790428 8.882630 31.064998 28.268914 20.817913 24.078554 42.405220 33.806276

_	,26	,27	[,28]	,29	,30	,31	,32	,33	,34
[1,]						27.5281987			3.804102
						12.6207729			
[3,]						19.2413950			10.728779
[4,]						22.1590297			6.502436
[5,]						16.0074527			14.676718
[6,]						18.4421375			11.071959
[7,]						0.9218075			
[8,]						20.4841516		All a surrous and a strong and	5.516158
[9,]						18.0393958			12.278082
[10,]						15.8701293			14.075593
[11,]		8.421739				14.2949518			15.945841
[12,]						17.3624827			7.255364
[13,]		3.956133	4.725550		6.970727				
	11.841362		6.884759	8.067184		10.8407825			14.348718
	14.714605		5.508025	5.398027	7.420130		15.671629		
	14.601595	6.722656	7.805060	7.034470	9.471848		15.711111		
[17,]						17.8545175		2.591555	
[18,]	7.400129	13.002763	14.069713	14.347860	16.197125	16.1766851	8.710475	8.406037	8.790428
[19,]	6.101728	13.931168	14.594395	16.341093	16.772899	19.2780718	5.983701	1.939786	8.882630
[20,]	28.656915	10.920317	10.180320	8.885632	8.022045	7.2798532	29.451441	26.230999	31.064998
[21,]	26.133191	9.646401	9.425405	7.035328	8.025922	3.9488350	27.107449	24.389697	28.268914
[22,]	18.030787	6.102510	5.627278	8.297543	6.594455	11.3934523	18.354930	14.466329	20.817913
[23,]	21.340358	6.099697	5.109568	7.236630	4.643484	9.7232491	21.770130	17.975814	24.078554
[24,]	39.993667	22.220960	21.415142	20.221221	19.192018	18.2636742	40.771466	37.470873	42.405220
[25,]	31.510047	14.023954	13.405182	11.729474	11.353051	9.4063587	32.380200	29.327457	33.806270
[26,]	0.000000	17.803880	18.691979	19.813879	20.943447	22.2706336	1.374777	4.233860	2.827154
[27,]	17.803880	0.000000	1.109322	2.626684	3.217215	5.8760589	18.551792	15.325052	20.302063
[28,]	18.691979	1.109322	0.000000	2.679106	2.251468	5.8686996	19.396452	16.063454	21.232020
[29,]	19.813879	2.626684	2.679106	0.000000	2.811053	3.2587776	20.657143	17.632740	22.185638
[30,]	20.943447	3.217215	2.251468	2.811053	0.000000	5.0980906	21.644106	18.278855	23.479470
[31,]	22.270634	5.876059	5.868700	3.258778	5.098091	0.0000000	23.215136	20.444652	24.475337
[32,]	1.374777	18.551792	19.396452	20.657143	21.644106	23.2151355	0.000000	4.043916	3.118894
[33,]	4.233860	15.325052	16.063454	17.632740	18.278855	20.4446520	4.043916	0.000000	6.973361
[34,]	2.827154	20.302063	21.232020	22.185638	23.479470	24.4753369	3.118894	6.973361	0.000000

#FUNGSI FIX KERNEL GAUSSIAN

fixgauss=gwr.sel(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9,data = dt,adapt=FALSE,coords=cbind(dt\$U,dt\$V),gweight=gwr.Gauss)

 $gwr.fixgauss=gwr(Y\sim X1+X2+X3+X4+X5+X6+X7+X8+X9, data=dt, bandwidth=fixgauss, coords=cbind(dt\$U, dt\$V), hatmatrix=TRUE, gweight=gwr.Gauss)$

gwr.fixgauss

```
gwr(formula = Y \sim X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9,
   data = dt, coords = cbind(dt$U, dt$V), bandwidth = fixgauss,
    gweight = gwr.Gauss, hatmatrix = TRUE)
Kernel function: gwr.Gauss
Fixed bandwidth: 46.55353
Summary of GWR coefficient estimates at data points:
                  Min. 1st Ou. Median
                                               3rd Qu.
                                                             Max.
                                                                   Global
X.Intercept. -80.9565895 -80.2495585 -79.5745884 -78.8208449 -76.4951375 -78.6908
           -0.3748687 -0.3678794 -0.3657101 -0.3628304 -0.3577212 -0.3553
X2
            X3
            45.6927992 45.8635848 46.1262317 46.3681656 46.7869549 46.9694
X4
            -0.0219146 -0.0191788 -0.0167561 -0.0139609 -0.0065683 -0.0067
X5
             0.0248618
                        0.0372090
                                  0.0418139
                                              0.0453648
                                                        0.0496980
                       0.7036128 0.7068687 0.7083427
X6
             0.6965678
                                                        0.7127779
                                                                    0.6986
            0.4350619 0.4478114 0.4561445 0.4660880 0.4894843 0.4543
X7
            -0.0748276 -0.0745516 -0.0739661 -0.0735256 -0.0728425 -0.0794
X9
             0.4808922 0.5030303 0.5112083 0.5192751 0.5317468 0.4991
Number of data points: 34
Effective number of parameters (residual: 2traceS - traceS'S): 10.68946
Effective degrees of freedom (residual: 2traceS - traceS'S): 23.31054
Sigma (residual: 2traceS - traceS'S): 5.716141
Effective number of parameters (model: traceS): 10.35658
Effective degrees of freedom (model: traceS): 23.64342
Sigma (model: traceS): 5.675759
Sigma (ML): 4.733034
AICc (GWR p. 61, eq 2.33; p. 96, eq. 4.21): 237.8788
AIC (GWR p. 96, eq. 4.22): 212.5549
Residual sum of squares: 761.6547
Quasi-global R2: 0.4945012
```

#FUNGSI KERNEL BISQUARE

 $\label{eq:fixbisquare=gwr.sel} fixbisquare=gwr.sel(Y\sim X1+X2+X3+X4+X5+X6+X7+X8+X9, data=dt, adapt=FALSE, coords=cbind(dt\$U, dt\$V), gweight=gwr.bisquare)$

gwr.fixbisquare=gwr(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9,data =dt,bandwidth=fixbisquare,coords=cbind(dt\$U,dt\$V),hatmatrix=TR UE,gweight=gwr.bisquare)

gwr.fixbisquare

```
gwr(formula = Y \sim X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9)
    data = dt, coords = cbind(dt$U, dt$V), bandwidth = fixbisquare,
    gweight = gwr.bisquare, hatmatrix = TRUE)
Kernel function: gwr.bisquare
Fixed bandwidth: 30.42591
Summary of GWR coefficient estimates at data points:
                   Min. 1st Qu. Median 3rd Qu.
                                                                        Global
                                                               Max.
X.Intercept. -97.514770 -95.682537 -88.567038 -81.355573 -50.451920 -78.6908
             -0.545677 -0.520235 -0.504786 -0.477606 -0.190034 -0.3553
X2
              0.754430 0.858315 0.891543 0.976328 1.534980 0.8838
X3
             -7.922637 33.738407 34.593887 36.650200 37.678140 46.9694
             -0.172654 -0.129728 -0.116816 -0.108685 0.026920 -0.0067
X4
             -0.242636 0.091746 0.188607 0.252535 0.299402 0.0303
X5
              0.160005 0.727090 0.770271 0.797073 0.837672 0.6986
0.116528 0.338581 0.462065 0.570735 0.703635 0.4543
X6
X7
              -0.154704 -0.018103 0.026403 0.053506 0.246078 -0.0794 0.440104 0.577994 0.688723 0.734435 1.528344 0.4991
X8
Number of data points: 34
Effective number of parameters (residual: 2traceS - traceS'S): 16.18015
Effective degrees of freedom (residual: 2traceS - traceS'S): 17.81985
Sigma (residual: 2traceS - traceS'S): 5.524377
Effective number of parameters (model: traceS): 14.21005
Effective degrees of freedom (model: traceS): 19.78995
Sigma (model: traceS): 5.242193
Sigma (ML): 3.99941
AICc (GWR p. 61, eq 2.33; p. 96, eq. 4.21): 248.8844
AIC (GWR p. 96, eq. 4.22): 204.9559
Residual sum of squares: 543.8394
```

#FUNGSI KERNEL TRICUBE

```
fixtricube=gwr.sel(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9,data = dt,adapt = FALSE,coords = cbind(dt$U,dt$V),gweight = gwr.tricube)
```

gwr.fixtricube=gwr(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9,data = dt,bandwidth = fixtricube,coords = cbind(dt\$U,dt\$V),hatmatrix = TRUE,gweight = gwr.tricube)

gwr.fixtricube

```
gwr(formula = Y \sim X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9)
     data = dt, coords = cbind(dt$U, dt$V), bandwidth = fixtricube,
     gweight = gwr.tricube, hatmatrix = TRUE)
Kernel function: gwr.tricube
Fixed bandwidth: 30.7559
Summary of GWR coefficient estimates at data points:
                        Min. 1st Qu. Median 3rd Qu. Max.
                                                                                           Global
X.Intercept. -102.717637 -99.595544 -85.003928 -78.353709 -52.167621 -78.6908
         -0.542803 -0.522800 -0.496891 -0.478668 -0.067161 -0.3553 
0.790104 0.836750 0.896391 1.006808 1.492972 0.8838
X2
                -14.199210 33.749820 35.659422 37.243646 39.235395 46.9694
X3

      -0.186182
      -0.128268
      -0.112264
      -0.099804
      0.064932
      -0.0067

      -0.223962
      0.091224
      0.191441
      0.259477
      0.298042
      0.0303

      0.049868
      0.742121
      0.770317
      0.795428
      0.813551
      0.6986

      0.110142
      0.358822
      0.455103
      0.545814
      0.732443
      0.4543

X4
X5
X6
X7
                  -0.150205 -0.018645 0.028104 0.066500 0.334051 -0.0794
XX
X9
                   0.431968 0.573650 0.689090 0.726681 1.633159 0.4991
Number of data points: 34
Effective number of parameters (residual: 2traceS - traceS'S): 15.00143
Effective degrees of freedom (residual: 2traceS - traceS'S): 18.99857
Sigma (residual: 2traceS - traceS'S): 5.51417
Effective number of parameters (model: traceS): 13.51718
Effective degrees of freedom (model: traceS): 20.48282
Sigma (model: traceS): 5.310626
Sigma (ML): 4.121935
AICc (GWR p. 61, eq 2.33; p. 96, eq. 4.21): 246.2078
AIC (GWR p. 96, eq. 4.22): 206.3149
Residual sum of squares: 577.6719
Quasi-global R2: 0.6166078
```

KERNEL ADAPTIF GAUSSIAN

adaptgauss=gwr.sel(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9,data=dt,adapt=TRUE,coords=cbind(dt\$U,dt\$V),gweight=gwr.Gauss)

gwr.adaptgauss=gwr(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9,data=dt,adapt=adaptgauss,coords=cbind(dt\$U,dt\$V),hatmatrix=TRUE,gweight=gwr.Gauss)

gwr.adaptgauss

```
gwr(formula = Y \sim X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9)
    data = dt, coords = cbind(dt$U, dt$V), gweight = gwr.Gauss,
    adapt = adaptgauss, hatmatrix = TRUE)
Kernel function: gwr.Gauss
Adaptive quantile: 0.9118003 (about 31 of 34 data points)
Summary of GWR coefficient estimates at data points:
                   Min. 1st Qu. Median 3rd Qu. Max. Global
X.Intercept. -85.392298 -84.589382 -84.050843 -80.122707 -75.630628 -78.6908
              -0.447248 -0.425135 -0.402780 -0.389826 -0.361372 -0.3553
               0.837440 0.874903 0.917716 0.938008 0.943219 0.8838
X2
             41.220909 42.089125 42.699219 43.705343 46.599611 46.9694
X3
X4
              -0.077738 -0.062478 -0.053216 -0.042007 -0.006660 -0.0067

        0.021998
        0.064704
        0.092216
        0.106397
        0.129697
        0.0303

        0.691893
        0.714827
        0.729350
        0.750209
        0.773977
        0.6986

X5
X6
¥7
              0.409058 0.419744 0.464445 0.511241 0.519609 0.4543
X8
              -0.071722 -0.058372 -0.051164 -0.043029 -0.022153 -0.0794
X9
               0.474865 0.523472 0.577833 0.581880 0.607300 0.4991
Number of data points: 34
Effective number of parameters (residual: 2traceS - traceS'S): 12.49439
Effective degrees of freedom (residual: 2traceS - traceS'S): 21.50561
Sigma (residual: 2traceS - traceS'S): 5.667285
Effective number of parameters (model: traceS): 11.37384
Effective degrees of freedom (model: traceS): 22.62616
Sigma (model: traceS): 5.525168
Sigma (ML): 4.507248
AICc (GWR p. 61, eq 2.33; p. 96, eq. 4.21): 239.6684
AIC (GWR p. 96, eq. 4.22): 210.2484
Residual sum of squares: 690.7196
Quasi-global R2: 0.5415797
```

KERNEL ADAPTIF BISQUARE

adaptbisquare=gwr.sel(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9, data=dt,adapt=TRUE,coords=cbind(dt\$U,dt\$V),gweight=gwr.bisquare)

gwr.adaptbisquare=gwr(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9,da ta=dt,adapt=adaptbisquare,coords=cbind(dt\$U,dt\$V),hatmatrix=TRU E,gweight=gwr.bisquare)

gwr.adaptbisquare gwr.adaptgauss

```
gwr(formula = Y \sim X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9)
   data = dt, coords = cbind(dt$U, dt$V), gweight = gwr.bisquare,
   adapt = adaptbisquare, hatmatrix = TRUE)
Kernel function: gwr.bisquare
Adaptive quantile: 0.9999339 (about 33 of 34 data points)
Summary of GWR coefficient estimates at data points:
                                               3rd Qu. Max. Global
                 Min.
                        1st Qu. Median
X.Intercept. -97.1149567 -92.9212327 -92.1761749 -85.9838722 -62.6186198 -78.6908
           -0.6509312 -0.5561572 -0.5028933 -0.4589013 -0.3990034 -0.3553
X2
            X3
           29.4286414 33.1342566 35.0872445 36.4720963 37.9588201 46.9694
X4
           -0.2087662 -0.1554174 -0.1233001 -0.1055358 -0.0354919 -0.0067
X5
           -0.0398335 0.1400112 0.2134936 0.2531758 0.3199241 0.0303
X6
            0.6802737 0.7286519 0.7699071 0.8204320 0.9278051 0.6986
¥7
            0.3359096 0.3797292 0.4591850 0.6507715 0.6759271 0.4543
X8
            -0.0467145 -0.0041127 0.0260731 0.0649211 0.1095509 -0.0794
X9
            0.4162402 0.6076615 0.7012915 0.7074956 0.7133849 0.4991
Number of data points: 34
Effective number of parameters (residual: 2traceS - traceS'S): 15.62996
Effective degrees of freedom (residual: 2traceS - traceS'S): 18.37004
Sigma (residual: 2traceS - traceS'S): 5.526557
Effective number of parameters (model: traceS): 13.67229
Effective degrees of freedom (model: traceS): 20.32771
Sigma (model: traceS): 5.253703
Sigma (ML): 4.062284
AICc (GWR p. 61, eq 2.33; p. 96, eq. 4.21): 246.2441
AIC (GWR p. 96, eq. 4.22): 205.4788
Residual sum of squares: 561.0731
Quasi-global R2: 0.6276242
```

KERNEL ADAPTIF TRICUBE

adapttricube=gwr.sel(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9,data=dt,adapt=TRUE,coords=cbind(dt\$U,dt\$V),gweight=gwr.tricube)

gwr.adapttricube=gwr(Y~X1+X2+X3+X4+X5+X6+X7+X8+X9,data =dt,adapt=adapttricube,coords=cbind(dt\$U,dt\$V),hatmatrix=TRUE,g weight=gwr.tricube)

gwr.adapttricube

```
gwr(formula = Y \sim X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8 + X9)
   data = dt, coords = cbind(dt$U, dt$V), gweight = gwr.tricube,
   adapt = adapttricube, hatmatrix = TRUE)
Kernel function: gwr.tricube
Adaptive quantile: 0.764709 (about 26 of 34 data points)
Summary of GWR coefficient estimates at data points:
                                               3rd Qu.
                                                           Max. Global
                 Min.
                        1st Qu.
                                    Median
X.Intercept. -185.563717 -125.622154 -64.877809 -49.457780 -39.547398 -78.6908
            -0.942090 -0.772502 -0.642528 -0.506269 -0.423634 -0.3553
X2
             0.685626 1.024000 1.116870 1.316233 1.578010 0.8838
X3
            -35.306797 -4.185411 8.721806 22.625720 77.242440 46.9694
X4
            -0.744130 -0.371944 -0.283558 -0.214602 -0.046949 -0.0067
X5
            -0.761511 -0.080738 0.110986 0.306911 0.937421 0.0303
X6
             X7
             -0.131090 0.025942 0.637661 0.808623 1.097991 0.4543
X8
             -0.191178 -0.058835 0.014883 0.063985 0.291089 -0.0794
X9
             -0.908432   0.486177   0.633369   3.687884   8.328752   0.4991
Number of data points: 34
Effective number of parameters (residual: 2traceS - traceS'S): 23.81159
Effective degrees of freedom (residual: 2traceS - traceS'S): 10.18841
Sigma (residual: 2traceS - traceS'S): 4.796469
Effective number of parameters (model: traceS): 21.33158
Effective degrees of freedom (model: traceS): 12.66842
Sigma (model: traceS): 4.301437
Sigma (ML): 2.625641
AICc (GWR p. 61, eq 2.33; p. 96, eq. 4.21): 304.4704
AIC (GWR p. 96, eq. 4.22): 183.4615
Residual sum of squares: 234.3956
Ouasi-global R2: 0.8444351
```

BANDWIDTH OPTIMAL

fixgauss

fixbisquare

fixtricube

adaptgauss

adaptbisquare

adapttricube

```
> fixgauss
[1] 46.55353
> fixbisquare
[1] 30.42591
> fixtricube
[1] 30.7559
> adaptgauss
[1] 0.9118003
> adaptbisquare
[1] 0.9999339
> adapttricube
[1] 0.764709
```

```
# FUNGSI KERNEL TERBAIK
R1 <- (1 - (gwr.fixgauss$results$rss/gwr.fixgauss$gTSS))
R2 <- (1 - (gwr.fixbisquare$results$rss/gwr.fixbisquare$gTSS))
R3 <- (1 - (gwr.fixtricube$results$rss/gwr.fixtricube$gTSS))
R4 <- (1 - (gwr.adaptgauss$results$rss/gwr.adaptgauss$gTSS))
R5 <- (1 - (gwr.adaptbisquare$results$rss/gwr.adaptbisquare$gTSS))
R6 <- (1 - (gwr.adapttricube$results$rss/gwr.adapttricube$gTSS))
Kernel Optimal <-data.frame("KERNEL" =
c("fixgauss", "fixbisquare", "fixtricube", "adaptgauss", "adaptbisquare",
"adapttricube"),
      "AIC" = c(gwr.fixgauss[["results"]][["AICh"]],
            gwr.fixbisquare[["results"]][["AICh"]],
            gwr.fixtricube[["results"]][["AICh"]],
            gwr.adaptgauss[["results"]][["AICh"]],
            gwr.adaptbisquare[["results"]][["AICh"]],
            gwr.adapttricube[["results"]][["AICh"]]),
      "R2" = c(R1,R2,R3,R4,R5,R6))
Kernel Optimal
```

KERNEL <chr></chr>	AIC <dbl></dbl>	R2 <dbl></dbl>
fixgauss	212.5549	0.4945012
fixbisquare	204.9559	0.6390619
fixtricube	206.3149	0.6166078
adaptgauss	210.2484	0.5415797
adaptbisquare	205.4788	0.6276242
adapttricube	183.4615	0.8444351

UJI KESESUAIN MODEL

BFC02.gwr.test(gwr.adapttricube)

```
Brunsdon, Fotheringham & Charlton (2002, pp. 91-2) ANOVA

data: gwr.adapttricube
F = 3.3476, df1 = 24.000, df2 = 10.188, p-value = 0.02442
alternative hypothesis: greater
sample estimates:
SS OLS residuals SS GWR residuals
784.6649 234.3956
```

#Bandwidth per wilayah

bi <-as.matrix(gwr.adapttricube\$bandwidth)

```
[19,] 16.19969
          [,1]
 [1,] 25.44459
                 [20,] 24.28871
 [2,] 14.11543
                 [21,] 23.16170
 [3,] 15.18333
                 [22,] 15.44745
 [4,] 19.32982
                 [23,] 17.97582
 [5,] 12.78224
                 [24,] 35.31058
 [6,] 14.86034
                 [25,] 27.58068
 [7,] 18.37269
[8,] 17.83350
                 [26,] 19.81400
[9,] 14.80186
                 [27,] 14.02409
[10,] 12.67060
                 [28,] 14.59455
[11,] 13.30507
                 [29,] 16.34123
[12,] 14.95475
                 [30,] 16.77306
[13,] 13.04184
[14,] 11.32028
                 [31,] 19.24140
[15,] 13.08674
                 [32,] 20.65725
[16,] 13.76227
                [33,] 17.63278
[17,] 15.06227
                 [34,] 22.18577
[18,] 15.29705
```

```
# MENCARI PEMBOBOT SETIAP WILAYAH

i<-nrow(h)

W<-matrix(0,34,34)

for (i in 1:34) {

for (j in 1:34) {

W[i,j]<-(1-(jarak[i,j]/h[i,])**3)**3

W[i,j]<-ifelse(jarak[i,j]<h[i,],W[i,j],0)

}

options(max.print=100000)

W
```

#ESTIMASI PARAMETER

result <- as.data.frame(gwr.adapttricube\$SDF)</pre>

coefresult <-data.frame(result\$X.Intercept.,result\$X1, result\$X2, result\$X3, result\$X4, result\$X5, result\$X6, result\$X7, result\$X8, result\$X9)

coefresult

result.X9	result.X8	result.X7	result.X6	result.X5	result.X4	result.X3	result.X2 <dbl></dbl>	result.X1	result.X.Intercept.
8.32875237	0.128223369	-0.13108990	0.5909033	-0.761510869	-0.43348018	-35.3067975	1.4488742	-0.4261803	-42.69183
0.21361981	-0.110308658	1.09799145	1.3214817	0.937421187	-0.23223625	70.4584861	1.1584198	-0.7901746	-185.56372
1.34234477	-0.063945804	0.07093011	0.9191915	0.025069489	-0.29512004	-0.2260353	1.1218242	-0.6468809	-57.49820
3.86783718	-0.073282708	0.00645945	0.7308992	-0.388278379	-0.28789037	-6.7566337	1.4352685	-0.4615300	-59.65252
-0.90843196	-0.113686989	0.40367377	1.1346411	0.675932919	-0.07036477	69.4660588	1.1272836	-0.5747824	-145.45025
0.84464338	-0.064070870	0.09993236	0.9244426	0.139626069	-0.25069606	8,8494913	1.1009307	-0.6448622	-67.93368
0.63175229	0.019325726	0.80925630	0.7587379	0.115345611	-0.39666128	3.6158691	1.0188354	-0.7195954	-66.60425
5.24914417	0.014267250	-0.02360896	0.6692293	-0.427656840	-0.30265817	-11.0368357	1.3092794	-0.4597075	-53.80166
-0.12286335	-0.083552506	0.15629684	0.9801821	0.294713169	-0.20490303	21.9814284	1.0996728	-0.6401947	-83.64507
-0.61266348	-0.095409879	0.35880687	1.0681812	0.675509253	-0.06577162	64.2007980	1.0473208	-0.5668674	-137,43128
0.04659708	-0.033613748	0.66528221	1.1283462	0.888383376	-0.12256909	69.3301400	1.0069008	-0.6619113	-163.90027
6.07482357	0.181821901	-0.04410855	0.6177906	-0.228467109	-0.31884133	-14.3180777	0.9842766	-0.5819822	-47.95961
0.28955896	-0.063211727	1.03202413	1.0360364	0.849861075	-0.23833825	62.3415269	1.1477496	-0.7569936	-167.50115
0.56374817	-0.191177576	0.92416632	1,1048766	0.908187264	-0.09030963	77.2424404	1.1391189	-0,7721602	-174.83206
0.54259433	0.058671654	0.92344542	0.7791701	0.378612919	-0.51469864	35.0649748	1.5780105	-0.7963754	-135.65637
0.62144739	0.070556687	0.92156574	0.5477984	0.250614378	-0.74413036	9.0079629	1.3185509	-0.9420901	-75.96877
3.42423321	0.034315431	0.02338568	0.7590934	-0.079700781	-0.27300957	-2.3963817	1.0629843	-0.5990547	-55.89784
4,24415315	0,172074764	0.03360917	0,7056954	0.098591889	-0.28894107	-4,7901469	0.7893114	-0,7726153	-49,50623
2.36840226	-0.045705831	0.04219230	0.8198240	-0.081084112	-0.27064902	-0.1105068	1.2074065	-0.5928553	-60.87829
0.48486789	-0.019163447	0.68976386	0.5622757	-0.026580061	-0.10155166	9.8451411	0.7640006	-0.5323428	-46.54220
0.51386380	-0.006968800	0.71251292	0.5917343	-0.001795442	-0.20872438	9.4069975	0.7449408	-0.5822232	-42.80830
0,24672331	-0.031651342	1,08169622	1,1988403	0.916293864	-0.25717801	58,9966319	1.0394940	-0,7895981	-170,15726
0.63319622	0.048507098	0.87608235	1.0842120	0.288357006	-0.24923698	22.8404843	1.1119153	-0.8209023	-108.16494
0.49010267	0.057266048	0.61953773	0.4166138	-0.064765356	-0.04694936	5.3327523	0.6936253	-0.4297292	-41.28460
0.48355688	0.015498960	0.65578337	0.4934344	-0.043152909	-0.09621356	8.5941214	0.6856259	-0.4975772	-39.54740
6.71571574	0.065756645	-0.06650801	0.6181241	-0.582990450	-0.34864067	-20.5500720	1.3463435	-0.4292402	-48.24501
0.65840583	0.280435839	0.78451338	0.9579497	0,271830500	-0.46085833	18,4279746	1.5328980	-0.8604170	-130.45677

-111.11832	-0.8910482	1.2452521	10.4869532	-0.39609533	0.310976781	0.9660594	0.75896368	0.291088662	0.67527626
-81.15905	-0.7771577	1.1050430	6.7678180	-0.38410507	0.170603798	0.8379741	0.80269941	0.077381380	0.6463883
83.34586	-0.7650996	1.0581892	9.7988836	-0.30092685	0.181738206	0.8914186	0.83042212	0.023838515	0.63354124
-63.15137	-0.7015543	0.9782741	2.9227779	-0.37971155	0.106627169	0.7412626	0.80672438	0.009342589	0.62704250
-49.44163	-0.4236337	1.3966537	-18.9529547	-0.34240825	-0.583510855	0.6440739	-0.05318112	0.023380736	6.19136002
-59.29623	-0.4957110	1.3361096	-4.7817543	-0.27922542	-0.305285281	0.7367033	0.01086042	-0.044867040	3.77576707
-44.67179	-0.4266065	1.3899186	-28.1892102	-0.39125921	-0.679244648	0.6003110	-0.09908167	0.099739016	7.59280602

MENCARI T HITUNG

 $t_X1 = gwr. adapttricube SDF X1/gwr. adapttricube SDF X1_se$

t X1

t X2

```
[1] -1.320330 -2.657423 -2.395182 -1.811856 -1.832140 -2.442359 -2.867705 -1.726100 -2.420334 -1.857283 [11] -2.248161 -1.957503 -2.761954 -2.722717 -2.547186 -2.570814 -2.242619 -2.385973 -2.332625 -2.187533 [21] -2.346168 -2.765299 -3.352492 -1.731078 -2.018308 -1.485170 -2.997933 -3.216409 -3.118362 -3.116010 [31] -2.790761 -1.498444 -1.966675 -1.393460
```

 $t_X2 = gwr. adapttricube SDF X2/gwr. adapttricube SDF X2_se$

```
[1] 1.6187649 0.8717242 1.2470418 1.7347550 0.9324836 1.2368872 1.3668978 1.5761752 1.1966149 0.9198568 [11] 0.8485960 1.1786889 1.1214830 1.0415096 1.7860847 1.3987098 1.2779449 0.9277335 1.4470586 0.9859028 [21] 0.9651953 0.9323997 1.6119362 0.8741837 0.8737244 1.5794617 1.8751648 1.6519449 1.5141605 1.4564860 [31] 1.2975546 1.6450111 1.6243289 1.5934496
```

t_X3=gwr.adapttricube\$SDF\$X3/gwr.adapttricube\$SDF\$X3_se t X3

t_X4=gwr.adapttricube\$SDF\$X4/gwr.adapttricube\$SDF\$X4_se t X4

```
[1] -1.355332784 1.142512196 0.044968484 -0.756370042 0.992775360 0.259585793 0.331219192 [8] -0.846695100 0.547309524 1.056338280 1.272660747 -0.463176016 1.238385888 1.220424583 [15] 0.786238736 0.498758458 -0.159606127 0.201222550 -0.158676442 -0.078239603 -0.005289545 [22] 1.286153759 0.835386315 -0.187530853 -0.125690872 -1.113006987 0.7087374724 0.832377381 [29] 0.488729786 0.524099627 0.305765807 -1.106526444 -0.607105159 -1.252789536
```

t_X5=gwr.adapttricube\$SDF\$X5/gwr.adapttricube\$SDF\$X5_se t X5

```
[1] -1.355332784 1.142512196 0.044968484 -0.756370042 0.992775360 0.259585793 0.331219192 [8] -0.846695100 0.547309524 1.056338280 1.272660747 -0.463176016 1.238385888 1.220424583 [15] 0.786238736 0.498758458 -0.159060127 0.201222550 -0.158676442 -0.078239603 -0.005289545 [22] 1.286153759 0.835386315 -0.187530853 -0.126509872 -1.1130060987 0.703734724 0.832377381 [29] 0.488729786 0.524099627 0.365765807 -1.106526444 -0.607105159 -1.252789536
```

t_X6=gwr.adapttricube\$SDF\$X6/gwr.adapttricube\$SDF\$X6_set_X6

```
[1] -0.57308174 3.47482437 0.32942728 0.93941568 1.74860239 0.47160643 3.21970808 -0.11065992 [1] 0.74547087 1.61262211 2.68994454 -0.20552697 3.97979492 3.06853115 3.27521047 3.11964645 [17] 0.11220250 0.16055590 0.20135742 2.77728795 2.87083309 3.73913414 3.47074383 2.41854093 [25] 2.61457731 -0.30407106 2.76465576 2.71737596 3.17896517 3.30699131 3.20288842 -0.24425540 [33] 0.05151540 -0.44325551
```

t_X7=gwr.adapttricube\$SDF\$X7/gwr.adapttricube\$SDF\$X7_se t X7

```
[1] -0.57308174 3.47482437 0.32942728 0.03941568 1.74860239 0.47160643 3.21970808 -0.11065992 [1] 0.74547087 1.61262211 2.68994454 -0.20552697 3.97979492 3.66853115 3.27521047 3.11964645 [17] 0.11220250 0.16055590 0.20155742 2.77728795 2.87083309 3.73913414 3.47074383 2.41854093 [25] 2.61457731 -0.30407106 2.76465576 2.71737596 3.17896517 3.30699131 3.20288842 -0.24425540 [33] 0.0815151604 -0.44325551
```

 $t_X8 = gwr.adapttricube\$SDF\$X8/gwr.adapttricube\$SDF\$X8_se$ t_X8

```
[1] 0.33619518 -0.32255219 -0.17454841 -0.20955467 -0.29142812 -0.17934684 0.07364516 0.04061253 [9] -0.23765559 -0.24708789 -0.10185368 0.51304796 -0.19915789 -0.52825976 -0.15419572 0.17561991 [17] 0.10041370 0.54905505 -0.13218921 -0.07060009 -0.02621320 -0.09217690 0.18600403 0.20136848 [25] 0.05662360 0.18047472 0.71382885 0.76955869 0.28280482 0.09040228 0.03554619 0.06460995 [33] -0.12776814 0.26533006
```

t_X9=gwr.adapttricube\$SDF\$X9/gwr.adapttricube\$SDF\$X9_se t X9

```
[1] 2.39715404 0.41353575 0.62220856 1.66077729 -0.61972206 0.43258820 2.10935375 2.03629314 [9] -0.67169628 -0.404109397 0.07171798 2.14111180 0.57759648 1.10646438 1.48508775 1.81848562 [17] 1.53383677 2.5914192 1.13982180 1.76591379 1.86443998 0.56996788 2.10794848 1.76563179 [25] 1.76535792 2.28027919 2.13269102 2.20220078 2.15652376 2.11673682 2.09617551 2.18430317 [33] 1.65434708 2.36437781
```

#MENAMPILKAN R-SQUARE LOKAL gwr.adapttricube.R2=gwr.adapttricube\$SDF\$localR2

gwr.adapttricube.R2

[1] 0.7457221 0.8817407 0.7251348 0.7488002 0.8039641 0.7413272 0.8536168 0.7578469 0.7555950 0.7937815 0.8486656 0.7766386 [13] 0.6738387 0.6736180 0.8643033 0.8653137 0.7593481 0.8028899 0.7580645 0.8580441 0.8510864 0.8082780 0.8729260 0.85931545 [25] 0.8549244 0.7538407 0.8653286 0.86328540 0.8652780 0.8652780 0.85931545 [25] 0.8492474 0.75812407 0.8653285 0.864274 0.85731270 0.8653285 0.86531570 0.7673770 0.7582252 0.7493626

#PERBANDINGAN GWR DAN OLS AIC OLS <-AIC(regols)

R2 GWR <- (1 -

(gwr.adapttricube\$results\$rss/gwr.adapttricube\$gTSS))

R2_OLS <-summary(regols)\$r.squared

data.frame("MODEL" =
$$c("GWR","OLS")$$
,

"AIC" = c(gwr.adapttricube[["results"]][["AICh"]],

"R2"=c(R2_GWR,R2_OLS))%>% arrange(AIC)

MODEL <chr></chr>	AIC <dbl></dbl>	R2 <dbl></dbl>
GWR	183.4615	0.8444351
OLS	225.2103	0.4792296

BIODATA PENULIS

Yohanita Uniyatri Aprilia adalah mahasiswa statistika Fakultas Sains dan Teknologi di Universitas PGRI Adi Buana Surabaya (UNIPA). Penulis lahir di Lempe, Kota Ruteng Provinsi Nusa Tenggara Timur pada tanggal 7 April 2002. Ia merupakan anak kedua dari dua bersaudara.

Penulis mulai kuliah di UNIPA pada tahun 2020. Alasannya masuk program studi statistika adalah karena penulis tertarik mempelajari bagaimana data dianalisis untuk mendapatkan *insight* yang bisa digunakan sebagai solusi dari berbagai permasalahan. Selain itu, ia juga bercita-cita menjadi *data analyst* dan *data scientist*. Saat ini, ia aktif sebagai ketua divisi Pendidikan dan penalaran IHMSI (Ikatan Himpunan Mahasiswa Statistika Indonesia).

Skripsi ini adalah karya penulis pertama dalam mengkaji tentang politik Perempuan di Indonesia. Diharapkan skripsi ini dapat menjadi acuan dan bahan diskusi kedepannya dalam partisipasi politik Perempuan dan penerapan *Geographically Wheighted Regression* (GWR).